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About this document
Olvid is a secure instant messaging application similar in its functionnalities to many other in-
stant messaging applications like WhatsApp, Signal, Citadel, etc. Olvid is architectured as two
independent modules: a cryptographic engine in charge of all the cryptographic operations, and an
application (the instant messaging user interface), working on top of this engine, able to exchange
text messages and attachments of any kind. The engine is “generic” in the sense that its API could
be used for any kind of communication between persons. The application layer does not implement
any form of cryptographic operation and is thus out of the scope of this document. In particular,
the word “message” will always be used with its cryptographic meaning in mind.

This document provides all the technical details about the cryptographic algorithms and pro-
tocols used in the cryptographic engine of Olvid. Roughly, Olvid makes it possible for users to
create cryptographic keys, to exchange key material (using various methods), to use this material
to send messages in a secure way, and to create secure channels that can be used by the application
layer.

Architecture & Trust Model

In Olvid, messages exchanged between users transit through servers. Similarly to the SMTP
protocol used in email, each user uses a specific Olvid server to receive messages, but several Olvid
servers can coexist. However, contrary to SMTP, messages for a given user are directly uploaded
to their Olvid server, and messages are not relayed through multiple servers.

The Olvid servers do not play any role in the security of exchanges between users. Olvid
servers are simple “drop boxes” where anyone can anonymously deposit messages. When receiving
a message, the server notifies the recipient that a new message is available, and the recipient (after
authenticating himself) simply retreives the message and deletes it.

The security of Olvid relies on the cryptographic protocols implemented in the cryptographic
engine and on the real-world connection/relationship and trust between users, but does not assume
any trusted third party. The main hypotheses of the security model of Olvid are:

� the user devices (smartphone, computer, etc.) on which the Olvid application runs are
healthy and can be trusted to execute the cryptographic protocols as they were implemented.

� the users exchanging messages through Olvid have a real-world connection/relationship and
they have some level of trust between each other. Depending on the nature of this connec-
tion/relationship, different protocols are implemented to initiate a secure communication in
Olvid.

� the servers are mostly “honest but curious”. What this means is that servers are not trusted,
they are considered as adversaries, but still behave as expected most of the time. In other
words, they will try to learn everything they can about the users and what they exchange,
but try to remain undetected and thus operate the service normally most of the time.
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Concepts & Terminology

Identity. In Olvid, each user is identified by an identity. An identity is composed of:

� a server url (so other users know where to post messages)
� two public keys: one for encryption, one for signature/authentication

As opposed to x509 certificates, the identity itself does not contain any identification element
allowing to tie the public keys it contains to a real world identity.

Device. Each user can have several devices (phone, computer, etc.), each identified by a deviceUid

(a random 32-byte sequence). Because of this, there are multiple ways to send a message to a user.
It can be sent to:

� an identity → broadcast message
� a single device → unicast message
� several devices → multicast message (which has nothing to do with TCP/IP multicast)

Contrary to what is usually understood as “broadcast”, broadcast messages are not necessarily
received by all devices. Here the message is put on the server and all recipient devices are notified.
The first device to download the message “wins”: the message is received by this device and deleted
from the server. But there is no guarantee that the message is received by a single device as two
devices could download it simultaneously.

Each (identity, deviceUid) pair is registered on the server so it can receive push notifications
when a new message arrives. Anyone can query the server to get the list of registered deviceUid

for an identity (see the device discovery protocol in Section 26).

Until multi-device is implemented, a single deviceUid can be registered on the server for a given
identity. Changing deviceUid (like after a backup restore as described in Section 35) requires to
“kick” any other deviceUid (see the device registration server entry point in Section 42.1).

QR-codes and invitation link. An identity does not contain any identification element allowing
to tie the cryptographic keys it contains to a real world person. When inviting someone to start
a discussion on Olvid, it is important that the invited person can identify who this invitation is
(supposedly) coming from. Invitations thus contain both the identity of a user, and a “display
name” packed in an Invitation Link similar to this:

https://invitation.olvid.io/#AwAAAIgAAAAAWmh0dHBzOi8vc2VydmVyLm9sdmlkLml\

vAADoTcM7E5duFaKw1mpuyGROJkSM51KOEulxyQEdabcimADZmeYVvTlSy5kkAtfM4o2JJuj\

sZTkrSG-B6VshvRU5gwAAAAAkTWF0dGhpZXUgRmluaWFzeiAoRGV2ZWxvcGVyIEAgT2x2aWQp

Such an Invitation Link can also be embedded in a QR-code for direct scanning on a smartphone
as seen on Figure 1.

API key. Accessing the Olvid server requires a valid API key. Users may use the Olvid application
for free using an embedded “hardcoded” API key which gives access to the general public free
features. Paying users receive a specific API key allowing to unlock additional features on the
server (VoIP calls, web client, multi-device, etc.), and in the application (after verification of the
key with the server).
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Figure 1: Example of a QR-code containing an Invitation Link.
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Part I

Notations and Conventions
In what follows, [0, 1, . . . , 255] = [0x00, 0x01, . . . , 0xFF]. In other words, we interchangeably use
the notation 0x10 (in hexadecimal) or 16 (in base 10).

We denote by [UTF-8 string] the set of all arrays of non-zero bytes corresponding to a valid
UTF-8 encoding, terminated by a zero byte.

1 Notation, Procedures Default Values, and Conventions

Given a procedure proc taking, e.g., two integer parameters a and b, we use the following notation to
indicate that a is a mandatory parameter and that, when the optional parameter b is not specified,
its default value is 13:

Proc(a, b = 13)

Assuming that the previous procedure returns the sum of a and b, then Proc(4, 2) returns 6, and
Proc(1) returns 14. Python and Swift programmers should be familiar with this notation.

Some of the procedures we describe may fail. When a procedure fails, it returns ⊥. We adopt
the convention that, by default, any procedure that calls a procedure that fails, also fails.

All the procedures we define in these specifications have strict input parameters domains. We
assume that they cannot be called outside of their parameter domain. In practice, this is ensured
by implementing these procedures using a strongly typed programming language.

To improve readability we will sometimes provide a table specifying its input/output parameters
and its arguments. As an example, here is the table for the procedure Proc:

Proc

parameters None

in
Z
Z

a

b = 13

out Z c
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2 Names, Lengths, etc.

In these specifications, name corresponds to zero or more modified UTF-8 encoded characters
followed by 0x00 (note that there cannot be a 0x00 inside the name).

When c ∈ {0, . . . , 255}∗ is an array of bytes, we denote by

len(c)

the length of the array. For example, if c ∈ {0, . . . , 255}` for some ` > 0, we have len(c) = `.

When s is a string, we denote by
len(s)

the byte-size of its UTF-8 encoded characters, including the last zero byte. For example, len("curve") =
6. When restricting to 7-bit ASCII characters, the length simply corresponds to the string length
plus one.

When x is an unsigned big integer, we denote by

len(x) =

⌊
log2(x)

8

⌋
+ 1,

with len(0) = 1.
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Part II

Cryptographic Primitives
In this part, we describe in full details the API of the cryptographic primitives used within the
cryptographic protocols. Each primitive (hash function, symmetric encryption, public key encryp-
tion, etc.) can have one or several associated functions that we describe in pseudo-code using the
conventions presented in Section 1.

3 Preliminaries

3.1 Exposed vs. Internal Primitives

The cryptographic library used within Olvid defines many cryptographic primitives. Certain prim-
itives, such as block cipher (Section 5) or symmetric encryption (Section 6) are not exposed to
the rest of the framework, but only used internally, within the cryptographic library. Other cryp-
tographic primitives, such as authenticated encryption (Section 11) are exposed and leverage the
internal primitives.

3.2 Cryptographic Keys

Cryptographic keys are usually considered as a “simple” type such as an array of bytes for symmet-
ric keys or sometimes integers or points on an elliptic curve for public/private key pairs. Within
these specifications, this is only the case for internal primitives (see Section 3.1), but not for
exposed primitives.

When exposed, keyed cryptographic primitives use a complex type denoted CryptographicKey
in order to define the domain of their key space. This allows to add essential information (such
as the exact keyed cryptographic algorithm associated with a key) to the raw bytes of the key.
As explained in Section 21.9, this also makes it possible to provide robust encoding/decoding
procedures for cryptographic keys and to enforce the use of an appropriate key when considering
a particular algorithm. In particular, this makes it impossible to use an AES key to compute an
HMAC digest.

Within these specifications, a cryptographic key key of type CryptographicKey always specifies
the following four values:

� key.algoClassByteId: A byte that specifies the algorithm class of this cryptographic key,
such as block cipher, symmetric encryption, MAC, authenticated encryption, signature, DH,
etc.

� key.algoImplemByteId: Given a specific algorithm class, this byte specifies the particular
implementation for this cryptographic key. For, e.g., the block cipher class, this byte allows
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to know whether the key is an AES or a DFC (Decorrelated Fast Cipher) key.
� key.dict: A dictionary (in the sense of Section 21.8) which (dictionary) keys depends on the

two above bytes.
� key.encodingByteId: A byte that specifies which encoding byte identifier (in the sense of

Section 19.1) to use when encoding this cryptographic key.

The type CryptographicKey is an abstract type. A CryptographicKey instance will always be an
instance of a concrete subtype of CryptographicKey. The following initializer will systematically be
called by the initializer of subtypes of CryptographicKey.

CryptographicKey (Initializer)

parameters None

in

{0, . . . , 255}
{0, . . . , 255}
Dictionary

{0, . . . , 255}

algoClassByteId

algoImplemByteId

dict

encodingByteId

We denote by

CryptographicKey(algoClassByteId, algoImplemByteId, dict, encodingByteId)→ key

the call to the CryptographicKey initializer.

1: procedure CryptographicKey(algoClassByteId, algoImplemByteId, dict, encodingByteId)
2: self.algoClassByteId← algoClassByteId

3: self.algoImplemByteId← algoImplemByteId

4: self.dict← dict

5: self.encodingByteId← encodingByteId

6: end procedure

3.2.1 Symmetric Keys

A symmetric key is a particular cryptographic key (see Section 3.2), typically used for block ciphers
and MACs. When used for an exposed primitive, a symmetric key is an instance of a complex type
SymmetricKey, which is a subtype of CryptographicKey (see Section 3.2). The type SymmetricKey
is an abstract type. A SymmetricKey instance will always be an instance of a concrete subtype of
SymmetricKey. The SymmetricKey key type imposes to concrete subtypes to specify the following
static value:

� SymmetricKey.length: the raw byte length of the symmetric key. For example, this is 16 for
AES256.

The following initializer will systematically be called by the initializer of subtypes of SymmetricKey.
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SymmetricKey (Initializer)

parameters None

in

{0, . . . , 255}
{0, . . . , 255}
Dictionary

algoClassByteId

algoImplemByteId

dict

We denote by

SymmetricKey(algoClassByteId, algoImplemByteId, dict)→ symKey

the call to the above SymmetricKey initializer.

1: procedure SymmetricKey(algoClassByteId, algoImplemByteId, dict)
2: encodingByteId← 0x90

3: CryptographicKey(algoClassByteId, algoImplemByteId, dict, encodingByteId)
4: end procedure

SymmetricKey (Initializer)

parameters None

in {0, . . . , 255}∗ b

We denote by
SymmetricKey(b)→ symKey

the call to the above SymmetricKey initializer. This method is abstract and only implemented by
concrete subtypes of SymmetricKey.

3.2.2 Public Keys

A public key is a particular cryptographic key (see Section 3.2), typically used for verifying digital
signatures, encrypting data using a public key encryption scheme, and more. When exposed, a
public key is an instance of a complex type PublicKey, which is a particular type of CryptographicKey
(see Section 3.2). The type PublicKey is an abstract type. A PublicKey instance will always be an
instance of a concrete subtype of PublicKey. The following initializer will systematically be called
by the initializer of subtypes of PublicKey.

PublicKey (Initializer)

parameters None

in

{0, . . . , 255}
{0, . . . , 255}
Dictionary

algoClassByteId

algoImplemByteId

dict
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We denote by

PublicKey(algoClassByteId, algoImplemByteId, dict)→ pubKey

the call to the above PublicKey initializer.

1: procedure PublicKey(algoClassByteId, algoImplemByteId, dict)
2: encodingByteId← 0x91

3: CryptographicKey(algoClassByteId, algoImplemByteId, dict, encodingByteId)
4: end procedure

PublicKey (Initializer)

parameters None

in {0, . . . , 255}∗ b

We denote by
PublicKey(b)→ pubKey

the call to the above PublicKey initializer. This method is abstract and only implemented by
concrete subtypes of PublicKey.

3.2.3 Private Keys

A private key is a particular cryptographic key (see Section 3.2), typically used for computing
digital signatures, decrypting data using a public key encryption scheme, and more.. When ex-
posed, a private key is an instance of a complex type PrivateKey, which is a particular type of
CryptographicKey (see Section 3.2). The type PrivateKey is an abstract type. A PrivateKey in-
stance will always be an instance of a concrete subtype of PrivateKey. The following initializer will
systematically be called by the initializer of subtypes of PrivateKey.

PrivateKey (Initializer)

parameters None

in

{0, . . . , 255}
{0, . . . , 255}
Dictionary

algoClassByteId

algoImplemByteId

dict

We denote by

PrivateKey(algoClassByteId, algoImplemByteId, dict)→ privKey

the call to the above PrivateKey initializer.

1: procedure PrivateKey(algoClassByteId, algoImplemByteId, dict)
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2: encodingByteId← 0x92

3: CryptographicKey(algoClassByteId, algoImplemByteId, dict, encodingByteId)
4: end procedure

PrivateKey (Initializer)

parameters None

in {0, . . . , 255}∗ b

We denote by
PrivateKey(b)→ privKey

the call to the above PrivateKey initializer. This method is abstract and only implemented by
concrete subtypes of PrivateKey.

3.3 List of Key Byte Identifiers

algoClassByteId algoImplemByteId

byte algorithm class byte algorithm implementation

0x00 SymEncKey 0x00 AES256CTRKey

0x01 MACKey 0x00 HMACWithSHA256Key

0x02 AuthEncKey 0x00 AES256CTRHMACSHA256Key

0x11 SignaturePublicKeyOverEC 0x00 SignatureOverMDC

0x01 SignatureOverCurve25519

0x12 KEMPublicKeyOverEC 0x00 KEMOverMDC

0x01 KEMOverCurve25519

0x14 AuthenticationPublicKeyOverEC 0x00 AuthenticationOverMDC

0x01 AuthenticationOverCurve25519

4 Hash Function

We denote by H the abstract type common to all hash functions. We denote by `h the byte-length
of a digest.
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H

parameters `h ∈ N

in {0, . . . , 255}∗ m

out {0, . . . , 255}`h h

We denote by
H(m)→ h

the procedure that computes the hash of a message m. This method is abstract and only imple-
mented by concrete subtypes of H.

4.1 SHA-256

We denote by SHA256 the concrete subtype of H allowing to compute a hash with SHA-256.

SHA256

parameters `h = 32

in {0, . . . , 255}∗ m

out {0, . . . , 255}32 h

The specifications of SHA256 are available in [15].

5 Block Cipher

We denote by E the abstract type common to all block ciphers. We denote by `k the byte-length
of a secret key and by `m the byte-lenght of a block.

E.encrypt

parameters `k, `m ∈ N

in
{0, . . . , 255}`m

{0, . . . , 255}`k
m

k

out {0, . . . , 255}`m c

We denote by
E.encrypt(m, k)→ c
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the symmetric encryption with the block cipher E of the message m ∈ {0, . . . , 255}`m under the
key k ∈ {0, . . . , 255}`k . This method is abstract and only implemented by concrete subtypes of
E.

E.decrypt

parameters `k, `m ∈ N

in
{0, . . . , 255}`m

{0, . . . , 255}`k
c

k

out {0, . . . , 255}`m m

We denote by
E.decrypt(c, k)→ m

the symmetric decryption with the block cipher E of the ciphertext c ∈ {0, . . . , 255}`m under the
key k ∈ {0, . . . , 255}`k . This method is abstract and only implemented by concrete subtypes of
E.

5.1 AES-256

We denote by AES256 the concrete subtype of E allowing to encrypt with AES-256.

AES256.encrypt

parameters `k = 32, `m = 16

in
{0, . . . , 255}16

{0, . . . , 255}32

m

k

out {0, . . . , 255}16 c

The specifications of the encryption procedure of AES256 are available in [11].

AES256.decrypt

parameters `k = 32, `m = 16

in
{0, . . . , 255}16

{0, . . . , 255}32

c

k

out {0, . . . , 255}16 m

The specifications of the decryption procedure of AES256 are available in [11].
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6 Symmetric Encryption

Symmetric keys used for symmetric encryption are instances of a complex type, denoted SymEncKey,
which is a subtype of SymmetricKey (see Section 3.2.1). The type SymEncKey is an abstract type. A
SymEncKey instance will always be an instance of a concrete subtype of SymEncKey. The following
initializer will systematically be called by the initializer of subtypes of SymEncKey.

SymEncKey (Initializer)

parameters None

in
{0, . . . , 255}
Dictionary

algoImplemByteId

dict

We denote by
SymEncKey(algoImplemByteId, dict)→ symEncKey

the call to the SymEncKey initializer.

1: procedure SymEncKey(algoImplemByteId, dict)
2: algoClassByteId← 0x00

3: SymmetricKey(algoClassByteId, algoImplemByteId, dict)
4: end procedure

SymEnc.encrypt

parameters `iv, `n ∈ N

in

{0, . . . , 255}∗

SymEncKey

{0, . . . , 255}`iv+`n

m

symEncKey

iv ‖ n

out {0, . . . , 255}∗ c

We denote by
SymEnc.encrypt(m, symEncKey, iv ‖ n)→ c

the symmetric encryption with the symmetric encryption algorithm SymEnc of the message m ∈
{0, . . . , 255}∗ under the key symEncKey ∈ SymEncKey, initial vector iv ∈ {0, . . . , 255}`iv , and
nonce n ∈ {0, . . . , 255}`n . An initial vector iv should be unpredictable. A nonce n does not have
to be unpredictable, but should never be used twice with the same key. If the nonce size is small
(e.g., 64 bits), taking a nonce at random is not enough. In that case, the nonce can be kept in
memory and incremented each time a new message is sent. Both iv and n are transmitted in clear.
This method is abstract and only implemented by concrete subtypes of SymEnc.
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SymEnc.decrypt

parameters `iv, `n ∈ N

in
{0, . . . , 255}∗

SymEncKey

m

symEncKey

out {0, . . . , 255}∗ m

We denote by
SymEnc.decrypt(c, symEncKey)→ m

the symmetric decryption with the symmetric encryption algorithm SymEnc of the ciphertext
c ∈ {0, . . . , 255}∗ under the key symEncKey ∈ SymEncKey. This method is abstract and only
implemented by concrete subtypes of SymEnc.

SymEnc.ciphertextLength

parameters None

in N `m

out N `c

We denote by
SymEnc.ciphertextLength(`m)→ `c

the static procedure that returns the final length of the ciphertext corresponding to a plaintext
of byte-lenght `m if encrypted with the symmetric encryption algorithm SymEnc. This method is
abstract and only implemented by concrete subtypes of SymEnc.

SymEnc.plaintextLength

parameters None

in N `c

out N `m

We denote by
SymEnc.plaintextLength(`c)→ `m

the static procedure that returns the plaintext length corresponding to a ciphertext of byte-lenght
`c if decrypted with the symmetric encryption algorithm SymEnc. This method is abstract and
only implemented by concrete subtypes of SymEnc.
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6.1 AES-256 in CTR Mode

We denote by AES256CTR the concrete subtype of SymEnc allowing to encrypt using AES-256 in
CTR mode. We denote by AES256CTRKey the concrete subtype of SymEncKey of AES256CTR
keys. The following initializer allows to create a AES256CTRKey.

AES256CTRKey (Initializer)

parameters None

in Dictionary dict

We denote by
AES256CTRKey(dict)→ symEncKey

the call to the AES256CTRKey initializer.

1: procedure AES256CTRKey(dict)
2: encoded raw← dict["enckey"]
3: raw← decodeBytes(encoded raw)
4: if len(raw) 6= 32 then return ⊥ end if
5: algoImplemByteId← 0x00

6: SymEncKey(algoImplemByteId, dict)
7: end procedure

AES256CTRKey (Initializer)

parameters None

in {0, . . . , 255}∗ b

1: procedure AES256CTRKey(b)
2: encoded raw← encodeBytes(b)
3: dict["enckey"]← encoded raw

4: AES256CTRKey(dict)
5: end procedure
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AES256CTR.encrypt

parameters `iv = 0, `n = 8

in

{0, . . . , 255}∗

AES256CTRKey

{0, . . . , 255}8

m

symEncKey

n

out {0, . . . , 255}∗ c

1: procedure AES256CTR.encrypt(m, symEncKey, n)
2: encoded raw← symEncKey.dict["enckey"]
3: k← decodeBytes(encoded raw)
4: `← length(m)
5: enc← AES256.encrypt
6: let s ∈ {0, . . . , 255}` be the ` first bytes of enc(n‖0, k) ‖ enc(n‖1, k) ‖ enc(n‖2, k) ‖ · · ·
7: return n‖(m⊕ s) ∈ {0, . . . , 255}8+`

8: end procedure

In the previous algorithm, x denotes the big-endian representation of the integer x as an array of
bytes. It can be obtained with bytesFromBigUInt(x, 8).

SymEnc.decrypt

parameters `iv = 0, `n = 8

in
{0, . . . , 255}∗

AES256CTRKey

c

symEncKey

out {0, . . . , 255}∗ m

1: procedure AES256CTR.decrypt(c, symEncKey)
2: encoded raw← symEncKey.dict["enckey"]
3: k← decodeBytes(encoded raw)
4: if len(c) < 8 then return ⊥ end if
5: let ` = len(c)− 8 and parse c as (n, c0) ∈ {0, . . . , 255}8 × {0, . . . , 255}`
6: enc← AES256.encrypt
7: let s ∈ {0, . . . , 255}` be the ` first bytes of enc(n‖0, k) ‖ enc(n‖1, k) ‖ enc(n‖2, k) ‖ · · ·
8: return c0⊕ s

9: end procedure
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AES256CTR.ciphertextLength

parameters None

in N `m

out N `c

1: procedure AES256CTR.ciphertextLength(`m)
2: return 8 + `m
3: end procedure

AES256CTR.plaintextLength

parameters None

in N `c

out N `m

1: procedure AES256CTR.plaintextLength(`c)
2: if `c < 8 then return ⊥ end if
3: return `c − 8
4: end procedure

7 Message Authentication Code

MAC is one of symmetric keyed primitive exposed by the cryptographic library. As such, symmetric
keys are instances of a complex type, denoted MACKey, which is a subtype of SymmetricKey (see
Section 3.2.1). The type MACKey is an abstract type. A MACKey instance will always be an
instance of a concrete subtype of MACKey. The following initializer will systematically be called
by the initializer of subtypes of MACKey.

MACKey (Initializer)

parameters None

in
{0, . . . , 255}
Dictionary

algoImplemByteId

dict

We denote by
MACKey(algoImplemByteId, dict)→ macKey
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the call to the MACKey initializer.

1: procedure MACKey(algoImplemByteId, dict)
2: algoClassByteId← 0x01

3: SymmetricKey(algoClassByteId, algoImplemByteId, dict)
4: end procedure

MAC.compute

parameters `t ∈ N

in
{0, . . . , 255}∗

MACKey

m

macKey

out {0, . . . , 255}`t t

The call
MAC.compute(m,macKey)→ t

computes the MAC of the plaintext m under the key macKey. This method is abstract and only
implemented by concrete subtypes of MAC.

MAC.finalOutputSize

parameters None

in None None

out N `t

We denote by
MAC.finalOutputSize()→ `t

the static procedure that returns the final length of a MAC digest. This method is abstract and
only implemented by concrete subtypes of MAC.

7.1 HMAC with SHA-256

We denote by HMACWithSHA256 the concrete subtype of MAC allowing to compute a MAC based
on HMAC with SHA-256. We denote by HMACWithSHA256Key the concrete subtype of MACKey
of HMACWithSHA256 keys. The following initializer allows to create a HMACWithSHA256Key
key.
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HMACWithSHA256Key (Initializer)

parameters None

in Dictionary dict

We denote by
HMACWithSHA256Key(dict)→ hmacKey

the call to the HMACWithSHA256Key initializer.

1: procedure HMACWithSHA256Key(dict)
2: encoded raw← dict["mackey"]
3: raw← decodeBytes(encoded raw)
4: if len(raw) < 32 then return ⊥ end if
5: algoImplemByteId← 0x00

6: MACKey(algoImplemByteId, dict)
7: end procedure

HMACWithSHA256Key (Initializer)

parameters None

in {0, . . . , 255}∗ b

1: procedure HMACWithSHA256Key(b)
2: encoded raw← encodeBytes(b)
3: dict["mackey"]← encoded raw

4: HMACWithSHA256Key(dict)
5: end procedure

HMACWithSHA256.generateKey

parameters None

in {0, . . . , 255}∗ seed

out HMACWithSHA256Key hmacKey

1: procedure HMACWithSHA256.generateKey(seed)
2: kdf ← KDFFromPRNGWithHMACWithSHA256
3: return kdf.compute(seed,HMACWithSHA256Key)
4: end procedure
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HMACWithSHA256.generateKey

parameters None

in PRNG prng

out HMACWithSHA256Key hmacKey

1: procedure HMACWithSHA256.generateKey(prng)
2: seed← prng.bytes(32)
3: return HMACWithSHA256.generateKey(seed)
4: end procedure

HMACWithSHA256.compute

parameters None

in
{0, . . . , 255}∗

MACKey

m

macKey

out {0, . . . , 255}`t t

The implementation of the compute procedure for HMACWithSHA256 is the following:

1: procedure HMACWithSHA256.compute(m,macKey)
2: if macKey is not a HMACWithSHA256Key then return ⊥ end if
3: encoded raw← macKey.dict["mackey"]
4: k← decodeBytes(encoded raw)
5: opad← (92, 92, . . . , 92) ∈ {0, . . . , 255}64

6: ipad← (54, 54, . . . , 54) ∈ {0, . . . , 255}64

7: ko = (k‖0 · · · 0)⊕ opad ∈ {0, . . . , 255}64

8: ki = (k‖0 · · · 0)⊕ ipad ∈ {0, . . . , 255}64

9: return SHA256
(
ko ‖ SHA256(ki ‖ m)

)
10: end procedure

HMACWithSHA256.finalOutputSize

parameters None

in None None

out N 32
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The implementation of the finalOutputSize procedure for HMACWithSHA256 is the following:

1: procedure HMACWithSHA256.finalOutputSize()
2: return 32
3: end procedure

8 Key Derivation Function (KDF)

A Key Derivation Function (KDF) allows to create a SymmetricKey instance in a deterministic way
from an input seed.

KDF.compute

parameters None

in
{0, . . . , 255}∗

SymmetricKey subtype

seed

T

out T k

In the previous definition, init is a deterministic procedure that takes an array of bytes as an input
and outputs an instance of T (which is a concrete subtype of SymmetricKey).

The call
KDF(seed,T)→ k

computes a symmetric key key k of type T from a seed seed. This method is abstract and only
implemented by concrete subtypes of KDF.

8.1 KDF Based on SHA-256

We denote by KDFFromPRNGWithHMACWithSHA256 the concrete subtype of KDF allowing to
compute symmetric keys from a seed using the PRNG defined in Section 10.1.

KDFFromPRNGWithHMACWithSHA256.compute

parameters None

in
{0, . . . , 255}∗

SymmetricKey subtype

seed

T

out T k

1: procedure KDFFromPRNGWithHMACWithSHA256.compute(seed,T)
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2: prng = PRNGWithHMACWithSHA256(seed)
3: b← prng.bytes(T.length)
4: return T(b)
5: end procedure

Note that this procedure fails in case the initialization of the PRNG instance fails, which
happens when the seed seed is not long enough. See Section 10.

9 Commitment

Commitment schemes within these specification are subtypes of Commitment.

Commitment.commit

parameters

in

{0, . . . , 255}∗

{0, . . . , 255}∗

PRNG

tag

value

prng

out
{0, . . . , 255}∗

{0, . . . , 255}∗
commitment

decommitToken

We denote by

Commitment.commit(tag, value, prng)→ (commitment, decommitToken)

the commitment on a tag tag and value value using the PRNG instance prng. The result is a
commitment and a decommitToken allowing to open the commitment. This method is abstract
and only implemented by concrete subtypes of Commitment.

Commitment.open

parameters

in

{0, . . . , 255}∗

{0, . . . , 255}∗

{0, . . . , 255}∗

commitment

tag

decommitToken

out {0, . . . , 255}∗ value

We denote by

Commitment.open(commitment, tag, decommitToken)→ value
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the procedure allowing to open a commitment and tag using the decommitToken, which recovers
the value that was commited. This method is abstract and only implemented by concrete subtypes
of Commitment.

9.1 Commitment based on SHA-256

We denote by CommitmentWithSHA256 the subtype of Commitment that implements the ex-
tractable random oracle commitment described in [16, p.51] using SHA-256.

CommitmentWithSHA256.commit

parameters

in

{0, . . . , 255}∗

{0, . . . , 255}∗

PRNG

tag

value

prng

out
{0, . . . , 255}∗

{0, . . . , 255}∗
commitment

decommitToken

We denote by

CommitmentWithSHA256.commit(tag, value, prng)→ (commitment, decommitToken)

the procedure allowing to compute a commitment on a tag tag and value value using the PRNG
instance prng. The result is a commitment and a decommitToken allowing to open the commit-
ment.

1: procedure CommitmentWithSHA256.commit(tag, value, prng)
2: e← prng.bytes(32)
3: d← value ‖ e
4: commitment← SHA256(tag ‖ d)
5: return (commitment, d)
6: end procedure

CommitmentWithSHA256.open

parameters

in

{0, . . . , 255}∗

{0, . . . , 255}∗

{0, . . . , 255}∗

commitment

tag

decommitToken

out {0, . . . , 255}∗ value
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We denote by

CommitmentWithSHA256.open(commitment, tag, decommitToken)→ value

the procedure allowing to open a commitment and tag using the decommitToken, which recovers
the value that was commited.

1: procedure CommitmentWithSHA256.open(commitment, tag, decommitToken)
2: computedCommitment← SHA256(tag ‖ decommitToken)
3: if computedCommitment 6= commitment then return ⊥ end if
4: Parse decommitToken as value ‖ e where len(e) = 32
5: return value

6: end procedure

10 Pseudorandom Generator

Most pseudorandom generators (PRNGs) require to keep track of an internal state between succes-
sive calls. This makes PRNGs quite different from the other primitives defined in this document.
For this reason, we use slightly different notations for PRNGs than for, e.g., hash functions or
block ciphers.

We denote by PRNG the abstract type common to all PRNGs. Letting prng be an instance of
a PRNG, we denote by

prng.state

the internal state of this instance.

PRNG (Initializer)

parameters None

in {0, . . . , 255}∗ seed

We denote by
PRNG(seed)

the procedure that initializes a fresh instance prng of type PRNG. Note that, in this document,
we always denote a PRNG instance by prng. This method is abstract and only implemented by
concrete subtypes of PRNG.

The minimum seed size is determined by the concrete subtype of PRNG (which assumes that
a seed of ` bytes contains 8` bits of entropy). If the seed is not long enough, the procedure shall
fail and the PRNG instance is not initialized.

Page 30/131



Specifications of Olvid - Application and Server

prng.bytes

parameters None

in N ` = 32

out {0, . . . , 255}∗ r

We denote by
prng.bytes(`)→ r

the call to the initialized PRNG instance prng that generates a uniformly distributed pseudorandom
byte string r of ` bytes. This procedures updates the internal state of the PRNG instance prng.
This method is abstract and only implemented by concrete subtypes of PRNG.

prng.bigInt

parameters None

in N n

out N a

We denote by
prng.bigInt(n)→ a

the call to the initialized PRNG instance prng that generates a uniformly distributed pseudorandom
random big integer a ∈ [0, n−1]. This procedures updates the internal state of the PRNG instance
prng. We define the bigInt procedure using the procedure bytes:

1: procedure prng.bigInt(n)
2: Let l be the smallest integer such that n ≤ 2l and ` = dl/8e
3: Let m be the smallest integer in {1, 3, 7, 15, 31, 63, 127, 255} s.t. m ≥ bn/256`−1c
4: while True do
5: s = prng.bytes(`)
6: s[0] = s[0] andm

7: r =
∑`−1
i=0 s[`− 1− i] · 256i

8: If r < n, return r
9: end while

10: end procedure

10.1 FIPS 800-90A HMAC DRBG Based on SHA-256

We denote by PRNGWithHMACWithSHA256 the concrete subtype of PRNG that implements the
FIPS 800-90A HMAC DRBG algorithm described in [3], using the hash function is SHA-256. In
this section, `h = 32 denotes the byte output length of SHA-256. The internal state prng.state
of an initialized instance prng of type PRNGWithHMACWithSHA256 gives access to two vari-
ables
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� prng.state.k ∈ {0, . . . , 255}32

� prng.state.v ∈ {0, . . . , 255}32

We first define an additional procedure, called update, which takes some auxiliary data ∈
{0, . . . , 255}∗ in order to update the internal state. This procedure works as follows:

1: procedure prng.update(data)
2: k← self.state.k
3: v← self.state.v
4: hmacKey← HMACWithSHA256Key(k)
5: k = HMACWithSHA256.compute(v ‖ 0x00 ‖ data), hmacKey)
6: v = HMACWithSHA256.compute(v, hmacKey)
7: if length(data) > 0 then
8: k = HMACWithSHA256.compute(v ‖ 0x01 ‖ data), hmacKey)
9: v = HMACWithSHA256.compute(v, hmacKey)

10: end if
11: self.state.k← k

12: self.state.v← v

13: end procedure

PRNGWithHMACWithSHA256 (Initializer)

parameters None

in {0, . . . , 255}∗ seed

The initialization procedure expects a seed of at least `h = 32 bytes. Note that although the
FIPS 800-90A standard does not enforce the seed size, we choose to do so. Note also that the
input seed that we use here corresponds to the concatenation of the parameters entropy input,
nonce, and personalization string in [3, Sec. 10.1.2.3], and that we omit the reseed counter. The
procedure works as follows:

1: procedure PRNGWithHMACWithSHA256(seed)
2: if len(seed) < 32 then return ⊥ end if
3: self.state.k = (0, 0, . . . , 0) ∈ {0, . . . , 255}32

4: self.state.v = (1, 1, . . . , 1) ∈ {0, . . . , 255}32

5: self.update(seed)
6: end procedure

prng.bytes

parameters None

in N ` = 32

out {0, . . . , 255}∗ r
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When prng is an instance of PRNGWithHMACWithSHA256, the bytes procedure works as follows
(note that we omit the additional input of [3, Sec. 10.1.2.5]):

1: procedure prng.bytes(`)
2: k← self.state.k
3: v← self.state.v
4: hmacKey← HMACWithSHA256Key(k)
5: s← [ ]
6: while len(s) < ` do
7: v← HMACWithSHA256.compute(v, hmacKey)
8: s← s ‖ v
9: end while

10: self.update([ ])
11: self.state.k← k

12: self.state.v← v

13: truncate s to its first ` bytes
14: return s

15: end procedure

11 Authenticated Encryption

Authenticated Encryption is one of symmetric keyed primitive exposed by the cryptographic li-
brary. As such, symmetric keys are instances of a complex type, denoted AuthEncKey, which
is a subtype of SymmetricKey (see Section 3.2.1). The type AuthEncKey is an abstract type. A
AuthEncKey instance will always be an instance of a concrete subtype of AuthEncKey. The following
initializer will systematically be called by the initializer of subtypes of AuthEncKey.

AuthEncKey (Initializer)

parameters None

in
{0, . . . , 255}
Dictionary

algoImplemByteId

dict

We denote by
AuthEncKey(algoImplemByteId, dict)→ authEncKey

the call to the AuthEncKey initializer.

1: procedure AuthEncKey(algoImplemByteId, dict)
2: algoClassByteId← 0x02

3: SymmetricKey(algoClassByteId, algoImplemByteId, dict)
4: end procedure
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AuthEnc.encrypt

parameters None

in

{0, . . . , 255}∗

AuthEncKey

PRNG

m

authEncKey

prng

out {0, . . . , 255}∗ c

The call
AuthEnc.encrypt(m, authEncKey, prng)→ c

encrypts the plaintext m under the key authEncKey using the PRNG instance prng. This method is
abstract and only implemented by concrete subtypes of AuthEnc.

AuthEnc.decrypt

parameters None

in
{0, . . . , 255}∗

AuthEncKey

c

authEncKey

out {0, . . . , 255}∗ m

The call
AuthEnc.decrypt(c, authEncKey)→ m

decrypts the ciphertext c under the key authEncKey. This method is abstract and only implemented
by concrete subtypes of AuthEnc.

AuthEnc.ciphertextLength

parameters None

in N `m

out N `c

We denote by
AuthEnc.ciphertextLength(`m)→ `c

the static procedure that returns the final length of the ciphertext corresponding to a plain-
text of byte-lenght `m. This method is abstract and only implemented by concrete subtypes
of AuthEnc.
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AuthEnc.plaintextLength

parameters None

in N `c

out N `m

We denote by
AuthEnc.plaintextLength(`c)→ `m

the static procedure that returns the final length of the plaintext corresponding to a cipher-
text of byte-lenght `c. This method is abstract and only implemented by concrete subtypes of
AuthEnc.

11.1 Encrypt-then-Mac with AES-256 and HMAC with SHA-256

We denote by AES256CTRHMACSHA256 the concrete subtype of AuthEnc that implements Encrypt-
then-Mac with AES-256 and HMAC with SHA-256. We denote by AES256CTRHMACSHA256Key
the concrete subtype of AuthEncKey of AES256CTRHMACSHA256 keys. The following initializer
allows to create a AES256CTRHMACSHA256Key key.

AES256CTRHMACSHA256Key (Initializer)

parameters None

in Dictionary dict

We denote by
AES256CTRHMACSHA256Key(dict)→ authEncKey

the call to the AES256CTRHMACSHA256Key initializer.

1: procedure AES256CTRHMACSHA256Key(dict)
2: self.ke← AES256CTRKey(dict)
3: self.ka← HMACWithSHA256Key(dict)
4: algoImplemByteId← 0x00

5: AuthEncKey(algoImplemByteId, dict)
6: end procedure

AES256CTRHMACSHA256Key (Initializer)

parameters None

in {0, . . . , 255}∗ b
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1: procedure AES256CTRHMACSHA256Key(b)
2: if length(b) 6= 64 then return ⊥ end if
3: let b1 denote the first 32 bytes of b
4: let b2 denote the last 32 bytes of b
5: dict["mackey"]← encodeBytes(b1)
6: dict["enckey"]← encodeBytes(b2)
7: AES256CTRHMACSHA256Key(dict)
8: end procedure

AES256CTRHMACSHA256.generateKey

parameters None

in {0, . . . , 255}∗ seed

out AES256CTRHMACSHA256Key authEncKey

1: procedure AES256CTRHMACSHA256.generateKey(seed)
2: kdf ← KDFFromPRNGWithHMACWithSHA256
3: return kdf.compute(seed,AES256CTRHMACSHA256Key)
4: end procedure

12 Edwards Curves

All the elliptic curves we consider within these specifications are Edwards curves [12] and formalized
as an instance of a complex type denoted EdwardsCurve. The type EdwardsCurve is an abstract type.
An EdwardsCurve instance will always be an instance of a concrete subtype of EdwardsCurve. A
background on elliptic curves is available in Appendix A. An instance curve of EdwardsCurve
provides the following parameters:

� curve.p: The primer order of the underlying finite field Fp,
� curve.d: the parameter defining the Edwards curve over Fp,
� curve.G = (Gx, Gy): the base point explicitly defined by the curve,
� curve.q: the prime order the subgroup generated by G,
� curve.ν: the lcm of the cofactor #E(Fp)/q of the curve.

For simplicity, a curve can also return all parameters at once:

curve.parameters→ (p, d,G, q, ν)
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curve.isOnCurve

parameters None

in N× N (x, y)

out {True, False} bool

We let
curve.isOnCurve((x, y))→ bool

be the procedure that checks whether a point (x, y) is on the curve instance curve. The procedure
works as follows:

1: procedure curve.isOnCurve((x, y))
2: (p, d,G, q, ν)← curve.parameters
3: x2← x2 mod p
4: y2← y2 mod p
5: return x2 + y2 mod p = 1 + dx2y2 mod p
6: end procedure

curve.xCoordinatesFromY

parameters None

in N y

out N× N (x1, x2)

We let
curve.xCoordinatesFromY(y)

be the procedure that returns the two possible x coordinates of a point on the curve instance
curve, when they exist, where the point is specified using its y coordinate only. In the following
procedure, note that:

� since d is assumed not to be a square, then 1− dy2 is invertible modulo p;
� after step 12 we have p− 1 = 2st with t odd;

1: procedure curve.xCoordinatesFromY(y)
2: (p, d,G, q, ν)← curve.parameters
3: y2 ← y2 mod p
4: x2 ← (1− y2)(1− dy2)−1 mod p

5: if x
p−1
2

2 mod p 6= 1 then return ⊥ end if
6: if p mod 4 = 3 then

7: x← x
p+1
4

2 mod p
8: else
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9: g ← 1

10: repeat g ← g + 1 until g
p−1
2 mod p 6= 1

11: t← p− 1 and s← 0
12: repeat t← t/2 and s← s+ 1 until t mod 2 6= 0
13: e← 0
14: for i← 2 to s do
15: if (x2g

−e)
p−1

2i mod p 6= 1 then e← 2i−1 + e end if
16: end for

17: x← g−t
e
2x

t+1
2

2 mod p
18: end if
19: return (x,−x mod p)
20: end procedure

curve.scalarMultiplication

parameters q, p ∈ N fixed by curve.

in [0, 1, . . . , q − 1] n

[0, 1, . . . , p− 1] y

out [0, 1, . . . , p− 1] yn

We know from the discussion of Section A.2.1 that it possible to perform the scalar multipli-
cation of a point P = (x, y) by n, on an Edwards curve defined by the parameter d ∈ Fp (which
must be a non-square in Fp), using y-coordinate only computations. We denote by

curve.scalarMultiplication(n, y)→ yn

the call to the procedure that, given a scalar n, a point P of y-coordinate y, and the curve instance
curve, returns the y-coordinate yn of the point nP ∈ E.

Denoting n = (n`−1n`−2 . . . n1n0) the binary representation of n (where n`−1 = 1 is the most
significant bit), the following procedure returns the y-coordinate yn of the point nP ∈ E (note
that in practice, one should precompute c and perform the main loop more efficiently to reduce
the number of field squarings and multiplications):

1: procedure curve.scalarMultiplication(n, y)
2: (p, d,G, q, ν)← curve.parameters
3: if n = 0 or y = 1 then return 1 end if
4: if y = −1 then return 1− 2× (n mod 2) end if
5: c← (1− d)−1 mod p,
6: uP ← (1 + y) mod p and wP ← (1− y) mod p
7: uQ ← 0, wQ ← 0, uR ← uP , and wR ← wP
8: for i← ` down to 1 do
9: t1 ← (uQ − wQ)(uR + wR) mod p

10: t2 ← (uQ + wQ)(uR − wR) mod p

11: uQ+R ← wP (t1 + t2)
2

mod p
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12: wQ+R ← uP (t1 − t2)
2

mod p
13: if ni−1 = 0 then
14: t3 ← (uQ + wQ)2 mod p
15: t4 ← (uQ − wQ)2 mod p
16: t5 ← t3 − t4 mod p
17: u2Q ← t3t4 mod p
18: w2Q ← t5 (t4 + ct5) mod p
19: (uQ, wQ)← (u2Q, w2Q) mod p and (uR, wR)← (uQ+R, wQ+R) mod p
20: else
21: t3 ← (uR + wR)2 mod p
22: t4 ← (uR − wR)2 mod p
23: t5 ← t3 − t4 mod p
24: u2R ← t3t4 mod p
25: w2R ← t5 (t4 + ct5) mod p
26: (uQ, wQ)← (uQ+R, wQ+R) mod p and (uR, wR)← (u2R, w2R) mod p
27: end if
28: end for
29: return (uQ − wQ)(uQ + wQ)−1 mod p
30: end procedure

curve.pointAddition

parameters q, p ∈ N fixed by curve.

in [0, 1, . . . , p− 1]2 (x1, y1)

[0, 1, . . . , p− 1]2 (x2, y2)

out [0, 1, . . . , p− 1]2 (x, y)

We denote by
curve.pointAddition((x1, y1), (x2, y2))

the call to the procedure that, given two points P1 = (x1, y1) and P2 = (x2, y2), and the curve
instance curve, returns the coordinates of the point P = P1 + P2 on the curve. Note that this
procedure does not check whether the points given in argument are on the curve. This check has
to be made before this function is called. The procedure works as follows:

1: procedure curve.pointAddition((x1, y1), (x2, y2))
2: (p, d,G, q, ν)← curve.parameters
3: t← dx1x2y1y2 mod p
4: z ← (1 + t)−1 mod p
5: x← z(x1y2 + y1x2) mod p
6: z ← (1− t)−1 mod p
7: y ← z(y1y2 − x1x2) mod p
8: return (x, y)
9: end procedure
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curve.scalarMultiplicationWithX

parameters q, p ∈ N fixed by curve.

in [0, 1, . . . , q − 1] n

[0, 1, . . . , p− 1]2 (x, y)

out [0, 1, . . . , p− 1]2 (xn, yn)

We denote by
curve.scalarMultiplicationWithX(n, (x, y))

the call to the procedure that, given a scalar n, a point P = (x, y), and the curve instance curve,
returns both coordinates of the point nP ∈ E. This procedure fails if P is not on the curve defined
by curve.

Denoting n = (n`−1n`−2 . . . n1n0) the binary representation of n (where n`−1 = 1 is the most
significant bit), the following procedure (based on Montgomery ladder, see Section A.2.2) returns
both coordinates of nP on the curve:

1: procedure scalarMultiplicationWithX(n, (x, y), curve)
2: if not curve.isOnCurve((x, y)) then return ⊥ end if
3: if n = 0 or y = 1 then return (0, 1) end if
4: if y = −1 then return (0, 1− 2× (n mod 2)) end if
5: (x1, y1)← (0, 1) and (x2, y2)← (x, y)
6: for i← ` down to 1 do
7: if ni = 0 then
8: (x2, y2)← curve.pointAddition((x1, y1), (x2, y2))
9: (x1, y1)← curve.pointAddition((x1, y1), (x1, y1))

10: else
11: (x1, y1)← curve.pointAddition((x1, y1), (x2, y2))
12: (x2, y2)← curve.pointAddition((x2, y2), (x2, y2))
13: end if
14: end for
15: return (x1, y1)
16: end procedure
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curve.mulAdd

parameters

in

[0, 1, . . . , q − 1]

[0, 1, . . . , p− 1]2

[0, 1, . . . , q − 1](
[0, 1, . . . , p− 1] ∪ ⊥

)
× [0, 1, . . . , p− 1]

a

(x1, y1)

b

(x2, y2)

out [0, 1, . . . , p− 1]2 × [0, 1, . . . , p− 1]2 (Q,Q′)

Letting P1 = (x1, y1) and P2 = (x2, y2), we denote by

curve.mulAdd(a, (x1, y1), b, (x2, y2))

the call to the procedure that computes Q = aP1 + bP2 on the curve identified by curve. In case
x2 = ⊥, the procedure either fails (when there is no x2 such that (x2, y2) is on the curve) or there
are two candidates for Q. Those two candidates are returned by the function. When x2 6= ⊥, the
procedure either fails (when (x2, y2) is not on the curve) or outputs (Q,Q′) such that Q = Q′. The
procedure also fails if (x1, y1) is not on the curve. The procedure works as follows:

1: procedure curve.mulAdd(a, (x1, y1), b, (x2, y2))
2: (x3, y3)← curve.scalarMultiplicationWithX(a, (x1, y1))
3: if x2 6= ⊥ then
4: (x4, y4)← curve.scalarMultiplicationWithX(b, (x2, y2))
5: (x, y)← curve.pointAddition((x3, y3), (x4, y4))
6: (x′, y′)← (x, y)
7: else
8: y4 ← curve.scalarMultiplication(b, y2)
9: (x4, x

′
4)← xCoordinatesFromY(y4, curve)

10: (x, y)← curve.pointAddition((x3, y3), (x4, y4))
11: (x′, y′)← curve.pointAddition((x3, y3), (x′4, y4))
12: end if
13: return ((x, y), (x′, y′))
14: end procedure

Note that step 2 fails if (x1, y1) is not on the curve. Similarly, step 4 fails if (x2, y2) is not on
the curve. Moreover, step 9 fails in case y4 cannot be the y-coordinate of point on the curve. For
these reasons, we do not need to explicitly check if (x1, y1), (x2, y2), (x4, y4), and (x′4, y4) are on
the curve.
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curve.generateRandomScalarAndPoint

parameters

in prng PRNG

out
[0, 1, . . . , q − 1]

[0, 1, . . . , p− 1]2
λ

Q

Given an instance prng of PRNG, we denote by

curve.generateRandomScalarAndPoint(prng)→ (λ,Q)

the call to the procedure that generates a random scalar λ ∈ [0, . . . , q− 1] and computes the point
Q = λ× curve.G. The procedure works as follows:

1: procedure curve.generateRandomScalarAndPoint(prng)
2: λ← 2 + prng.bigInt(curve.q − 2)
3: Q← curve.scalarMultiplicationWithX(λ, curve.G)
4: return (λ,Q)
5: end procedure

12.1 Curve25519

We denote by Curve25519 the concrete subtype of EdwardsCurve that corresponds to Curve25519 [5].
The following initializer allows to create a Curve25519 instance.

Curve25519 (Initializer)

parameters None

in

1: procedure Curve25519()
2: self.p← 2255 − 19
3: self.d← 20800338683988658368647408995589388737092878452977063003340006470870624536394

4: self.G.x← 9771384041963202563870679428059935816164187996444183106833894008023910952347

5: self.G.y ← 46316835694926478169428394003475163141307993866256225615783033603165251855960

6: self.q ← 7237005577332262213973186563042994240857116359379907606001950938285454250989

7: self.ν ← 8
8: end procedure
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12.2 MDC

We denote by MDC the concrete subtype of EdwardsCurve that corresponds to MDC [2]. The
following initializer allows to create a MDC instance.

MDC (Initializer)

parameters None

in

1: procedure Curve25519()
2: self.p← 109112363276961190442711090369149551676330307646118204517771511330536253156371

3: self.d← 39384817741350628573161184301225915800358770588933756071948264625804612259721

4: self.G.x← 82549803222202399340024462032964942512025856818700414254726364205096731424315

5: self.G.y ← 91549545637415734422658288799119041756378259523097147807813396915125932811445

6: self.q ← 27278090819240297610677772592287387918930509574048068887630978293185521973243

7: self.ν ← 4
8: end procedure

13 Public and Private Keys over Edwards Curves

Public keys used for digital signatures are instances of a complex type, denoted PublicKeyOverEC,
which is a subtype of PublicKey (see Section 3.2.2). The type PublicKeyOverEC is an abstract type.
A PublicKeyOverEC instance will always be an instance of a concrete subtype of PublicKeyOverEC.
Private keys used for digital signatures are instances of a complex type, denoted PrivateKeyOverEC,
which is a subtype of PrivateKey (see Section 3.2.3). The type PrivateKeyOverEC is an ab-
stract type. A PrivateKeyOverEC instance will always be an instance of a concrete subtype of
PrivateKeyOverEC.

An instance pk of PublicKeyOverEC gives access to the underlying elliptic curve instance by
calling pk.curve, which is one of the concrete subtypes of EdwardsCurve. A public key on an elliptic
curve is also defined by a base point. The special form of elliptic curves we use makes it possible to
only keep the y-coordinate of this base point. As a consequence, an instance pk of PublicKeyOverEC
always gives access to the y-coordinate of the base point by calling pk.y. When available, it also
gives access to the full base point, by calling pk.point.

An instance sk of PrivateKeyOverEC gives access to the underlying elliptic curve instance by
calling sk.curve, which is one of the concrete subtypes of EdwardsCurve. Moreover, a call to sk.scalar
gives access to the underlying scalar of the private key.

The following initializer will systematically be called by the initializer of subtypes of PublicKeyOverEC
when the full base point is available.
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PublicKeyOverEC (Initializer)

parameters None

in

{0, . . . , 255}
{0, . . . , 255}
EdwardsCurve

[0, . . . , p− 1]2

algoClassByteId

algoImplemByteId

curve

P

We denote by

PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, P )→ pk

the call to the PublicKeyOverEC initializer.

1: procedure PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, P )
2: if not curve.isOnCurve(P ) then return ⊥ end if
3: self.point← P
4: self.y ← P.y
5: self.curve← curve
6: dict["x"]← encodeBigUInt(P.x mod p, len(curve.p))
7: dict["y"]← encodeBigUInt(P.y mod p, len(curve.p))
8: PublicKey(algoClassByteId, algoImplemByteId, dict)
9: end procedure

The following initializer will systematically be called by the initializer of subtypes of PublicKeyOverEC
when the full base point is not available.

PublicKeyOverEC (Initializer)

parameters None

in

{0, . . . , 255}
{0, . . . , 255}
EdwardsCurve

[0, . . . , p− 1]

algoClassByteId

algoImplemByteId

curve

y

We denote by

PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, y)→ pk

the call to the PublicKeyOverEC initializer.

1: procedure PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, y)
2: self.point← ⊥
3: self.y ← y
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4: self.curve← curve
5: dict["y"]← encodeBigUInt(y mod p, len(curve.p))
6: PublicKey(algoClassByteId, algoImplemByteId, dict)
7: end procedure

The following initializer will systematically be called by the initializer of subtypes of PrivateKeyOverEC.

PrivateKeyOverEC (Initializer)

parameters None

in

{0, . . . , 255}
{0, . . . , 255}
EdwardsCurve

[0, . . . , q − 1]

algoClassByteId

algoImplemByteId

curve

λ

We denote by

PrivateKeyOverEC(algoClassByteId, algoImplemByteId, curve, λ)→ sk

the call to the PrivateKeyOverEC initializer.

1: procedure PrivateKeyOverEC(algoClassByteId, algoImplemByteId, curve, λ)
2: self.scalar← λ
3: self.curve← curve
4: dict["n"]← encodeBigUInt(λ mod q, len(curve.q))
5: PrivateKey(algoClassByteId, algoImplemByteId, dict)
6: end procedure

pk.getCompactKey

parameters None

in

out {0, . . . , 255}∗ compactKey

Given a public key instance pk of PublicKeyOverEC, the above procedure allows to obtain a compact
byte array representation of the public key. We denote by

pk.getCompactKey()→ compactKey

the call to the pk.getCompactKey procedure.

1: procedure pk.getCompactKey()
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2: return self.algoImplemByteId ‖ bytesFromBigUInt(pk.y)
3: end procedure

PublicKeyOverEC.expandCompactKey

parameters None

in {0, . . . , 255}∗ compactKey

out PublicKeyOverEC pk

Given a compact key compactKey, the previous procedure allows to recover a PublicKeyOverEC in-
stance. This method is abstract and only implemented by concrete subtypes of PublicKeyOverEC.

14 Signature

All signature schemes we consider within these specifications are defined over an Edwards curve and
are subtypes of SignatureOverEC. Public keys used for digital signatures are instances of a complex
type, denoted SignaturePublicKeyOverEC, which is a subtype of PublicKeyOverEC (see Section 13).
The type SignaturePublicKeyOverEC is an abstract type. A SignaturePublicKeyOverEC instance will
always be an instance of a concrete subtype of SignaturePublicKeyOverEC. Private keys used for
digital signatures are instances of a complex type, denoted SignaturePrivateKeyOverEC, which is a
subtype of PrivateKeyOverEC (see Section 13). The type SignaturePrivateKeyOverEC is an abstract
type. A SignaturePrivateKeyOverEC instance will always be an instance of a concrete subtype of
SignaturePrivateKeyOverEC.

SignatureOverEC.curveFromAlgoImplemByteId

parameters None

in {0, . . . , 255} algoImplemByteId

out EdwardsCurve curve

We denote by

SignatureOverEC.curveFromAlgoImplemByteId(algoImplemByteId)→ curve

the call to the SignatureOverEC.curveFromAlgoImplemByteId procedure.

1: procedure SignatureOverEC.curveFromAlgoImplemByteId(algoImplemByteId)
2: if algoImplemByteId = 0x00 then return MDC() end if
3: if algoImplemByteId = 0x01 then return Curve25519() end if
4: return ⊥
5: end procedure
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SignatureOverEC.algoImplemByteIdFromCurve

parameters None

in EdwardsCurve curve

out {0, . . . , 255} algoImplemByteId

We denote by

SignatureOverEC.algoImplemByteIdFromCurve(curve)→ algoImplemByteId

the call to the SignatureOverEC.algoImplemByteIdFromCurve procedure.

1: procedure SignatureOverEC.algoImplemByteIdFromCurve(curve)
2: if curve = MDC() then return 0x00 end if
3: if curve = Curve25519() then return 0x01 end if
4: return ⊥
5: end procedure

The following initializer will systematically be called by the initializer of subtypes of SignaturePublicKeyOverEC
when the full base point is available.

SignaturePublicKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , p− 1]2
curve

P

We denote by
SignaturePublicKeyOverEC(curve, P )→ pk

the call to the SignaturePublicKeyOverEC initializer.

1: procedure SignaturePublicKeyOverEC(curve, P )
2: algoClassByteId← 0x11

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, P )
5: end procedure

The following initializer will systematically be called by the initializer of subtypes of SignaturePublicKeyOverEC
when the full base point is not available.
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SignaturePublicKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , p− 1]

curve

y

We denote by
SignaturePublicKeyOverEC(curve, y)→ pk

the call to the SignaturePublicKeyOverEC initializer.

1: procedure SignaturePublicKeyOverEC(curve, y)
2: algoClassByteId← 0x11

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, y)
5: end procedure

The following initializer will systematically be called by the initializer of subtypes of SignaturePrivateKeyOverEC.

SignaturePrivateKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , q − 1]

curve

λ

We denote by
SignaturePrivateKeyOverEC(curve, λ)→ sk

the call to the SignaturePrivateKeyOverEC initializer.

1: procedure SignaturePrivateKeyOverEC(curve, λ)
2: algoClassByteId← 0x11

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PrivateKeyOverEC(algoClassByteId, algoImplemByteId, curve, λ)
5: end procedure
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SignatureOverEC.generateKeyPair

parameters None

in
PRNG

EdwardsCurve

prng

curve

out
SignaturePublicKeyOverEC

SignaturePrivateKeyOverEC

pk

sk

We denote by
SignatureOverEC.generateKeyPair(prng, curve)→ (pk, sk)

the call to the SignatureOverEC.generateKeyPair procedure.

1: procedure SignatureOverEC.generateKeyPair(prng, curve)
2: (λ, P )← curve.generateRandomScalarAndPoint(prng)
3: pk ← SignaturePublicKeyOverEC(curve, P )
4: sk ← SignaturePrivateKeyOverEC(curve, λ)
5: return (pk, sk)
6: end procedure

SignatureOverEC.sign

parameters None

in

SignaturePrivateKeyOverEC

{0, . . . , 255}∗

SignaturePublicKeyOverEC

PRNG

sk

m

pk

prng

out {0, . . . , 255}∗ σ

We denote by
SignatureOverEC.sign(sk, m, pk, prng)→ σ

the procedure that computes the signature σ of a message m under the private key sk (associated
to the public key pk), using the initialized PRNG instance prng. The procedure works as follows
(see [17, p.166]):

1: procedure SignatureOverEC.sign(sk, m, pk, prng)
2: if sk.curve 6= pk.curve then return ⊥ end if
3: curve← sk.curve
4: (p, d,G, q, ν)← curve.parameters
5:

6: /* The generateKeyPair procedure allows to generate a random scalar and point */
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7: (pk′, sk′)← SignatureOverEC.generateKeyPair(prng, curve)
8:

9: /* Construct the data to hash */

10: Ay′ ← bytesFromBigUInt(pk′.y mod p, len(p))
11: Ay← bytesFromBigUInt(pk.y mod p, len(p))
12: data← Ay′‖Ay‖m
13:

14: /* Hash and map the digest onto a big unsigned integer */

15: h← SHA256(data)
16: e← bigUIntFromBytes(h)
17:

18: /* Sign */

19: r ← sk′.scalar
20: a← sk.scalar
21: y ← (r − a× e) mod q

22: z← bytesFromBigUInt(y, len(p))
23: σ ← h‖z
24: return σ
25: end procedure

SignatureOverEC.verify

parameters None

in

SignaturePublicKeyOverEC

{0, . . . , 255}∗

{0, . . . , 255}∗

pk

m

σ

out {True, False} b

We denote by
SignatureOverEC.verify(pk, m, σ)→ b

the procedure that verifies the signature σ of a message m under the public key pk. It returns True
if the signature is valid, False otherwise. The procedure works as follows:

1: procedure SignatureOverEC.verify(pk, m, σ)
2: curve← pk.curve
3: (p, d,G, q, ν)← curve.parameters
4:

5: /* Parse the signature */

6: if len(σ) 6= 32 + len(p) then return False end if
7: Parse h‖z← σ where len(h) = 32
8:

9: /* Extract the big integers */

10: e← bigUIntFromBytes(h)
11: y ← bigUIntFromBytes(z)
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12:

13: /* Compute the resulting point(s) */

14: P ← (pk.point 6= ⊥ ? pk.point : (⊥, pk.y))
15: (A1, A2)← mulAdd(y,G, b, P )
16:

17: /* Compute the corresponding data(s) to hash */

18: Ay← bytesFromBigUInt(pk.y, len(p))
19: A1y← bytesFromBigUInt(A1.y, len(p))
20: A2y← bytesFromBigUInt(A2.y, len(p))
21: data1← A1y‖Ay‖m
22: data2← A2y‖Ay‖m
23:

24: /* Hash the data(s). The signature is valid if there is a match. */

25: h1← SHA256(data1)
26: h2← SHA256(data2)
27: return (h = h1 or h = h2)
28: end procedure

14.1 Signature Key Generation over Curve25519

We denote by SignatureOverCurve25519 the concrete subtype of SignatureOverEC that allows to
perform and check digital signatures over Curve25519.

SignatureOverCurve25519.generateKeyPair

parameters None

in PRNG prng

out
SignaturePublicKeyOverEC

SignaturePrivateKeyOverEC

pk

sk

We denote by
SignatureOverCurve25519.generateKeyPair(prng)→ (pk, sk)

the call to the SignatureOverCurve25519.generateKeyPair procedure.

1: procedure SignatureOverCurve25519.generateKeyPair(prng)
2: curve← Curve25519()
3: return SignatureOverEC.generateKeyPair(prng, curve)
4: end procedure

14.2 Signature Key Generation over MDC

We denote by SignatureOverMDC the concrete subtype of SignatureOverEC that allows to perform
and check digital signatures over MDC.
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SignatureOverMDC.generateKeyPair

parameters None

in PRNG prng

out
SignaturePublicKeyOverEC

SignaturePrivateKeyOverEC

pk

sk

We denote by
SignatureOverMDC.generateKeyPair(prng)→ (pk, sk)

the call to the SignatureOverMDC.generateKeyPair procedure.

1: procedure SignatureOverMDC.generateKeyPair(prng)
2: curve← MDC()
3: return SignatureOverEC.generateKeyPair(prng, curve)
4: end procedure

15 Authentication

Within these specifications, authentications leverage digital signatures and are subtypes of AuthenticationOverEC.
Public keys used for checking a solution to an authentication challenge are instances of a complex
type, denoted AuthenticationPublicKeyOverEC, which is a subtype of PublicKeyOverEC (see Sec-
tion 13). The type AuthenticationPublicKeyOverEC is an abstract type. A AuthenticationPublicKeyOverEC
instance will always be an instance of a concrete subtype of AuthenticationPublicKeyOverEC. Pri-
vate keys used for solving an authentication challenge are instances of a complex type, denoted
AuthenticationPrivateKeyOverEC, which is a subtype of PrivateKeyOverEC (see Section 13). The
type AuthenticationPrivateKeyOverEC is an abstract type. A AuthenticationPrivateKeyOverEC in-
stance will always be an instance of a concrete subtype of AuthenticationPrivateKeyOverEC.

AuthenticationOverEC.curveFromAlgoImplemByteId

parameters None

in {0, . . . , 255} algoImplemByteId

out EdwardsCurve curve

We denote by

AuthenticationOverEC.curveFromAlgoImplemByteId(algoImplemByteId)→ curve

the call to the AuthenticationOverEC.curveFromAlgoImplemByteId procedure.

1: procedure AuthenticationOverEC.curveFromAlgoImplemByteId(algoImplemByteId)
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2: if algoImplemByteId = 0x00 then return MDC() end if
3: if algoImplemByteId = 0x01 then return Curve25519() end if
4: return ⊥
5: end procedure

AuthenticationOverEC.algoImplemByteIdFromCurve

parameters None

in EdwardsCurve curve

out {0, . . . , 255} algoImplemByteId

We denote by

AuthenticationOverEC.algoImplemByteIdFromCurve(curve)→ algoImplemByteId

the call to the AuthenticationOverEC.algoImplemByteIdFromCurve procedure.

1: procedure AuthenticationOverEC.algoImplemByteIdFromCurve(curve)
2: if curve = MDC() then return 0x00 end if
3: if curve = Curve25519() then return 0x01 end if
4: return ⊥
5: end procedure

The following initializer will systematically be called by the initializer of subtypes of AuthenticationPublicKeyOverEC
when the full base point is available.

AuthenticationPublicKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , p− 1]2
curve

P

We denote by
AuthenticationPublicKeyOverEC(curve, P )→ pk

the call to the AuthenticationPublicKeyOverEC initializer.

1: procedure AuthenticationPublicKeyOverEC(curve, P )
2: algoClassByteId← 0x14

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, P )
5: end procedure
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The following initializer will systematically be called by the initializer of subtypes of AuthenticationPublicKeyOverEC
when the full base point is not available.

AuthenticationPublicKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , p− 1]

curve

y

We denote by
AuthenticationPublicKeyOverEC(curve, y)→ pk

the call to the AuthenticationPublicKeyOverEC initializer.

1: procedure AuthenticationPublicKeyOverEC(curve, y)
2: algoClassByteId← 0x14

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, y)
5: end procedure

The following initializer will systematically be called by the initializer of subtypes of AuthenticationPrivateKeyOverEC.

AuthenticationPrivateKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , q − 1]

curve

λ

We denote by
AuthenticationPrivateKeyOverEC(curve, λ)→ sk

the call to the AuthenticationPrivateKeyOverEC initializer.

1: procedure AuthenticationPrivateKeyOverEC(curve, λ)
2: algoClassByteId← 0x14

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PrivateKeyOverEC(algoClassByteId, algoImplemByteId, curve, λ)
5: end procedure
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AuthenticationOverEC.generateKeyPair

parameters None

in
PRNG

EdwardsCurve

prng

curve

out
AuthenticationPublicKeyOverEC

AuthenticationPrivateKeyOverEC

pk

sk

We denote by
AuthenticationOverEC.generateKeyPair(prng, curve)→ (pk, sk)

the call to the AuthenticationOverEC.generateKeyPair procedure.

1: procedure AuthenticationOverEC.generateKeyPair(prng, curve)
2: (λ, P )← curve.generateRandomScalarAndPoint(prng)
3: pk ← AuthenticationPublicKeyOverEC(curve, P )
4: sk ← AuthenticationPrivateKeyOverEC(curve, λ)
5: return (pk, sk)
6: end procedure

Given an instance pk of AuthenticationPublicKeyOverEC, the following procedure returns an
instance pkσ of SignaturePublicKeyOverEC over the same curve, with the same base point.

pk.convertToSignatureKey

parameters None

in None None

out SignaturePublicKeyOverEC pkσ

We denote by
pk.convertToSignatureKey()→ pkσ

the call to the pk.convertToSignatureKey procedure.

1: procedure pk.convertToSignatureKey()
2: if pk.point 6= ⊥ then
3: return SignaturePublicKeyOverEC(pk.curve, pk.point)
4: else
5: return SignaturePublicKeyOverEC(pk.curve, pk.y)
6: end if
7: end procedure
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Given an instance sk of AuthenticationPrivateKeyOverEC, the following procedure returns an
instance skσ of SignaturePrivateKeyOverEC over the same curve, with the same scalar.

sk.convertToSignatureKey

parameters None

in None None

out SignaturePrivateKeyOverEC skσ

We denote by
sk.convertToSignatureKey()→ skσ

the call to the sk.convertToSignatureKey procedure.

1: procedure sk.convertToSignatureKey()
2: return SignaturePrivateKeyOverEC(sk.curve, sk.λ)
3: end procedure

AuthenticationOverEC.solve

parameters None

in

AuthenticationPrivateKeyOverEC

{0, . . . , 255}∗

{0, . . . , 255}∗

AuthenticationPublicKeyOverEC

PRNG

sk

challenge

prefix

pk

prng

out {0, . . . , 255}∗ response

We denote by

AuthenticationOverEC.solve(sk, challenge, prefix, pk, prng)→ response

the procedure that produces a solution response to an authentication challenge challenge prefixed
with prefix under the private key sk (associated to the encoded public key pk), using the initialized
PRNG instance prng. The procedure works as follows:

1: procedure AuthenticationOverEC.solve(sk, challenge, prefix, pk, prng)
2: if sk.curve 6= pk.curve then return ⊥ end if
3: suffix← prng.bytes(16)
4: formatted challenge← prefix‖challenge‖suffix
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5: pkσ ← pk.convertToSignatureKey()
6: skσ ← sk.convertToSignatureKey()
7: σ ← SignatureOverEC.sign(skσ, formatted challenge, pkσ, prng)
8: return suffix‖σ
9: end procedure

AuthenticationOverEC.check

parameters None

in

{0, . . . , 255}∗

{0, . . . , 255}∗

{0, . . . , 255}∗

AuthenticationPublicKeyOverEC

response

challenge

prefix

pk

out {True, False} bool

We denote by

AuthenticationOverEC.check(response, challenge, prefix, pk)→ bool

the procedure that checks the challenge response response to an authentication challenge challenge
prefixed with prefix using the public key pk. The procedure works as follows:

1: procedure AuthenticationOverEC.check(response, challenge, prefix, pk)
2: if len(response) < 16 then return ⊥
3: end if
4: Parse response as suffix‖σ where len(suffix) = 16
5: formatted challenge← prefix‖challenge‖suffix
6: pkσ ← pk.convertToSignatureKey()
7: return SignatureOverEC.verify(pkσ, formatted challenge, response)
8: end procedure

AuthenticationPublicKeyOverEC.expandCompactKey

parameters None

in {0, . . . , 255}∗ compactKey

out AuthenticationPublicKeyOverEC pk

We denote by

AuthenticationPublicKeyOverEC.expandCompactKey(compactKey)→ AuthenticationPublicKeyOverEC
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the procedure that recovers an instance pk of AuthenticationPublicKeyOverEC given a compact key
compactKey. The procedure works as follows:

1: procedure AuthenticationPublicKeyOverEC.expandCompactKey(compactKey)
2: if len(compactKey) = 0 then return ⊥ end if
3: Parse compactKey as algoImplemByteId‖yCoordinate where len(algoImplemByteId) = 1
4: curve← AuthenticationPublicKeyOverEC.curveFromAlgoImplemByteId(algoImplemByteId)
5: if len(compactKey) 6= 1 + len(curve.p) then return ⊥ end if
6: y ← bigUIntFromBytes(yCoordinate)
7: return AuthenticationPublicKeyOverEC(curve, y)
8: end procedure

15.1 Authentication over Curve25519

We denote by AuthenticationOverCurve25519 the concrete subtype of AuthenticationOverEC that
allows to solve authentication challenges and to check those solutions over Curve25519.

AuthenticationOverCurve25519.generateKeyPair

parameters None

in PRNG prng

out
AuthenticationPublicKeyOverEC

AuthenticationPrivateKeyOverEC

pk

sk

We denote by

AuthenticationOverCurve25519.generateKeyPair(prng)→ (pk, sk)

the call to the AuthenticationOverCurve25519.generateKeyPair procedure.

1: procedure AuthenticationOverCurve25519.generateKeyPair(prng)
2: curve← Curve25519()
3: return AuthenticationOverEC.generateKeyPair(prng, curve)
4: end procedure

15.2 Authentication over MDC

We denote by AuthenticationOverMDC the concrete subtype of AuthenticationOverEC that allows
to solve authentication challenges and to check those solutions over MDC.
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AuthenticationOverMDC.generateKeyPair

parameters None

in PRNG prng

out
AuthenticationPublicKeyOverEC

AuthenticationPrivateKeyOverEC

pk

sk

We denote by
AuthenticationOverMDC.generateKeyPair(prng)→ (pk, sk)

the call to the AuthenticationOverMDC.generateKeyPair procedure.

1: procedure AuthenticationOverMDC.generateKeyPair(prng)
2: curve← MDC()
3: return AuthenticationOverEC.generateKeyPair(prng, curve)
4: end procedure

16 Key Encapsulation Mechanism (KEM)

Key Encapsulation Mechanism (KEM) are instances of a complex type denoted KEMOverEC.
Public keys used for decrypting a encapsulated key are instances of a complex type, denoted
KEMPublicKeyOverEC, which is a subtype of PublicKeyOverEC (see Section 13). The type KEMPublicKeyOverEC
is an abstract type. A KEMPublicKeyOverEC instance will always be an instance of a concrete sub-
type of KEMPublicKeyOverEC. Private keys used for encapsulating a key are instances of a complex
type, denoted KEMPrivateKeyOverEC, which is a subtype of PrivateKeyOverEC (see Section 3.2.3).
The type KEMPrivateKeyOverEC is an abstract type. A KEMPrivateKeyOverEC instance will always
be an instance of a concrete subtype of KEMPrivateKeyOverEC.

KEMOverEC.curveFromAlgoImplemByteId

parameters None

in {0, . . . , 255} algoImplemByteId

out EdwardsCurve curve

We denote by

KEMOverEC.curveFromAlgoImplemByteId(algoImplemByteId)→ curve

the call to the KEMOverEC.curveFromAlgoImplemByteId procedure.

1: procedure KEMOverEC.curveFromAlgoImplemByteId(algoImplemByteId)
2: if algoImplemByteId = 0x00 then return MDC() end if
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3: if algoImplemByteId = 0x01 then return Curve25519() end if
4: return ⊥
5: end procedure

KEMOverEC.algoImplemByteIdFromCurve

parameters None

in EdwardsCurve curve

out {0, . . . , 255} algoImplemByteId

We denote by

KEMOverEC.algoImplemByteIdFromCurve(curve)→ algoImplemByteId

the call to the KEMOverEC.algoImplemByteIdFromCurve procedure.

1: procedure KEMOverEC.algoImplemByteIdFromCurve(curve)
2: if curve = MDC() then return 0x00 end if
3: if curve = Curve25519() then return 0x01 end if
4: return ⊥
5: end procedure

The following initializer will systematically be called by the initializer of subtypes of KEMPublicKeyOverEC
when the full base point is available.

KEMPublicKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , p− 1]2
curve

P

We denote by
KEMPublicKeyOverEC(curve, P )→ pk

the call to the KEMPublicKeyOverEC initializer.

1: procedure KEMPublicKeyOverEC(curve, P )
2: algoClassByteId← 0x12

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, P )
5: end procedure
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The following initializer will systematically be called by the initializer of subtypes of KEMPublicKeyOverEC
when the full base point is not available.

KEMPublicKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , p− 1]

curve

y

We denote by
KEMPublicKeyOverEC(curve, y)→ pk

the call to the KEMPublicKeyOverEC initializer.

1: procedure KEMPublicKeyOverEC(curve, y)
2: algoClassByteId← 0x12

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PublicKeyOverEC(algoClassByteId, algoImplemByteId, curve, y)
5: end procedure

The following initializer will systematically be called by the initializer of subtypes of KEMPrivateKeyOverEC.

KEMPrivateKeyOverEC (Initializer)

parameters None

in
EdwardsCurve

[0, . . . , q − 1]

curve

λ

We denote by
KEMPrivateKeyOverEC(curve, λ)→ sk

the call to the KEMPrivateKeyOverEC initializer.

1: procedure KEMPrivateKeyOverEC(curve, λ)
2: algoClassByteId← 0x12

3: algoImplemByteId← algoImplemByteIdFromCurve(curve)
4: PrivateKeyOverEC(algoClassByteId, algoImplemByteId, curve, λ)
5: end procedure
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KEMOverEC.generateKeyPair

parameters None

in
PRNG

EdwardsCurve

prng

curve

out
KEMPublicKeyOverEC

KEMPrivateKeyOverEC

pk

sk

We denote by
KEMOverEC.generateKeyPair(prng, curve)→ (pk, sk)

the call to the KEMOverEC.generateKeyPair procedure.

1: procedure KEMOverEC.generateKeyPair(prng, curve)
2: (λ, P )← curve.generateRandomScalarAndPoint(prng)
3: pk ← KEMPublicKeyOverEC(curve, P )
4: sk ← KEMPrivateKeyOverEC(curve, λ)
5: return (pk, sk)
6: end procedure

KEMOverEC.encrypt

parameters None

in

KEMPublicKeyOverEC

PRNG

SymmetricKey subtype

pk

prng

T

out
{0, . . . , 255}∗

T

encrypted key

key

We denote by

KEMOverEC.encrypt(pk, prng,T)→ (encrypted key, key)

the procedure that produces a ciphertext encrypted key containing a symmetric key key of type
T, encrypted under the public key pk, using the initialized PRNG instance prng. The procedure
works as follows (see [18, p.26]):

1: procedure KEMOverEC.encrypt(pk, prng,T)
2: curve← pk.curve
3: (p, d,G, q, ν)← curve.parameters
4: repeat r ← prng.bigInt(q) until r 6= 0
5: By ← curve.scalarMultiplication(r,G.y)
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6: Dy ← curve.scalarMultiplication(r, pk.y)
7: c← bytesFromBigUInt(By, len(p))
8: seed← c‖bytesFromBigUInt(Dy, len(p))
9: key← KDFFromPRNGWithHMACWithSHA256.compute(seed,T)

10: return (c, k)
11: end procedure

KEMOverEC.decrypt

parameters None

in

{0, . . . , 255}∗

KEMPrivateKeyOverEC

SymmetricKey subtype

encrypted key

sk

T

out T key

We denote by
KEMOverEC.decrypt(encrypted key, sk,T)→ key

the procedure that decrypts the ciphertext encrypted key containing a symmetric key key of type
T, using the private key sk. The procedure works as follows (see [18, p.26]):

1: procedure KEMOverEC.decrypt(encrypted key, sk,T)
2: curve← sk.curve
3: (p, d,G, q, ν)← curve.parameters
4: if len(encrypted key) 6= len(p) then return ⊥ end if
5: y ← bigUIntFromBytes(encrypted key)
6: By ← curve.scalarMultiplication(ν, y)
7: if By = 1 then return ⊥ end if
8: a← sk.scalar × (ν−1 mod q) mod q
9: Dy ← curve.scalarMultiplication(a,By)

10: seed← c‖bytesFromBigUInt(Dy, len(p))
11: return KDFFromPRNGWithHMACWithSHA256.compute(seed,T)
12: end procedure

KEMPublicKeyOverEC.expandCompactKey

parameters None

in {0, . . . , 255}∗ compactKey

out KEMPublicKeyOverEC pk

We denote by

KEMPublicKeyOverEC.expandCompactKey(compactKey)→ KEMPublicKeyOverEC
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the procedure that recovers an instance pk of KEMPublicKeyOverEC given a compact key compactKey.
The procedure works as follows:

1: procedure KEMPublicKeyOverEC.expandCompactKey(compactKey)
2: if len(compactKey) = 0 then return ⊥ end if
3: Parse compactKey as algoImplemByteId‖yCoordinate where len(algoImplemByteId) = 1
4: curve← KEMPublicKeyOverEC.curveFromAlgoImplemByteId(algoImplemByteId)
5: if len(compactKey) 6= 1 + len(curve.p) then return ⊥ end if
6: y ← bigUIntFromBytes(yCoordinate)
7: return KEMPublicKeyOverEC(curve, y)
8: end procedure

16.1 KEM over Curve25519

We denote by KEMOverCurve25519 the concrete subtype of KEMOverEC that allows to perform
KEM operations over Curve25519.

KEMOverCurve25519.generateKeyPair

parameters None

in PRNG prng

out
KEMPublicKeyOverEC

KEMPrivateKeyOverEC

pk

sk

We denote by
KEMOverCurve25519.generateKeyPair(prng)→ (pk, sk)

the call to the KEMOverCurve25519.generateKeyPair procedure.

1: procedure KEMOverCurve25519.generateKeyPair(prng)
2: curve← Curve25519()
3: return KEMOverEC.generateKeyPair(prng, curve)
4: end procedure

16.2 KEM over MDC

We denote by KEMOverMDC the concrete subtype of KEMOverEC that allows to perform KEM
operations over MDC.
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KEMOverMDC.generateKeyPair

parameters None

in PRNG prng

out
KEMPublicKeyOverEC

KEMPrivateKeyOverEC

pk

sk

We denote by
KEMOverMDC.generateKeyPair(prng)→ (pk, sk)

the call to the KEMOverMDC.generateKeyPair procedure.

1: procedure KEMOverMDC.generateKeyPair(prng)
2: curve← MDC()
3: return KEMOverEC.generateKeyPair(prng, curve)
4: end procedure

17 Cryptographic Identity

In Olvid, all communications occur between cryptographic identities. These identities are instance
of a complex type denoted CryptoIdentity. An instance cryptoIdentity of CryptoIdentity gives access
to three values:

� cryptoIdentity.serverURL: All messages sent to an identity pass through a server, identified
by this URL.

� cryptoIdentity.publicKeyForAuthentication: This public key is an instance of AuthenticationPublicKeyOverEC
and allows to check challenge responses computed by the owner of the associated private key
(i.e., of the owner of the corresponding owned cryptographic identity, see Section 18).

� cryptoIdentity.publicKeyForKEM: This public key is an instance of KEMPublicKeyOverEC and
allows to perform a KEM encrypt that shall only be decrypted by the owner of the associ-
ated private key (i.e., of the owner of the corresponding owned cryptographic identity, see
Section 18).

CryptoIdentity (Initializer)

parameters None

in

{0, . . . , 255}∗

AuthenticationPublicKeyOverEC

KEMPublicKeyOverEC

serverURL

pka
pke

Given a server URL serverURL, a public key for authentication pka, and a public key for KEM pke,
the previous initializer returns an instance cryptoIdentity of CryptoIdentity. We denote by

CryptoIdentity(serverURL, pka, pke)→ cryptoIdentity
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the call to the previous initializer. This initializer works as follows:

1: procedure CryptoIdentity(serverURL, pka, pke)
2: self.serverURL← serverURL

3: self.publicKeyForAuthentication← pka
4: self.publicKeyForKEM← pke
5: end procedure

Within the rest of this section, we denote by cryptoIdentity an instance of CryptoIdentity.

cryptoIdentity.getIdentity

parameters None

in

out {0, . . . , 255}∗ identity

Given a cryptographic identity cryptoIdentity, the procedure getIdentity returns a byte-array rep-
resentation of this cryptographic identity. In this document, this byte-array is what we call an
identity. We denote by

cryptoIdentity.getIdentity()→ identity

the call to the cryptoIdentity.getIdentity procedure.

1: procedure cryptoIdentity.getIdentity()
2: identity← serverURL

3: identity← identity ‖ 0x00
4: identity← identity ‖ self.publicKeyForAuthentication.getCompactKey()
5: identity← identity ‖ self.publicKeyForKEM.getCompactKey()
6: return identity

7: end procedure

CryptoIdentity (Initializer)

parameters None

in {0, . . . , 255}∗ identity

Given an identity identity, the previous initializer returns an instance cryptoIdentity of CryptoIdentity.
We denote by

CryptoIdentity(identity)→ cryptoIdentity

the call to the previous initializer. This initializer works as follows:

1: procedure CryptoIdentity(identity)
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2: Parse identity as serverURL ‖ 0x00 ‖ keys. Return ⊥ if this fails.
3: Check that serverURL is a valid URL
4: if len(keys) = 0 then return ⊥ end if
5: authImplemByteId← keys[0] // one byte

6: curvea ← AuthenticationOverEC.curveFromAlgoImplemByteId(authImplemByteId)
7: `a ← len(curvea.p)
8: if len(keys) < 2 + `a then return ⊥ end if
9: compactAuthKey← keys[1 . . . `a] // `a bytes

10: pka ← AuthenticationPublicKeyOverEC.expandCompactKey(compactAuthKey)
11: kemImplemByteId← keys[`a + 1] // One byte

12: curvee ← KEMPublicKeyOverEC.curveFromAlgoImplemByteId(kemImplemByteId)
13: `e ← len(curvee.p)
14: if len(keys) 6= 2 + `a + `e then return ⊥ end if
15: compactKEMKey← keys[`a + 2 . . . `a + 2 + `e − 1] // `e bytes

16: pke ← KEMPublicKeyOverEC.expandCompactKey(compactKEMKey)
17: self.serverURL← serverURL

18: self.publicKeyForAuthentication← pka
19: self.publicKeyForKEM← pke
20: end procedure

18 Owned Cryptographic Identity

A cryptographic identity is necessarily owned by a user. In that case, this user knows about the
private keys associated to the public keys presented in Section 17. The type OwnedCryptoIdentity
allows to represent these owned identities. An instance ownedCryptoIdentity of OwnedCryptoIdentity
gives access to three values:

� ownedCryptoIdentity.serverURL: All messages sent to an identity pass through a server, iden-
tified by this URL.

� ownedCryptoIdentity.publicKeyForAuthentication: This public key is an instance of AuthenticationPublicKeyOverEC
and allows to check challenge responses computed by the owner of the associated private key
(i.e., of the owner of the corresponding owned cryptographic identity, see Section 18).

� ownedCryptoIdentity.privateKeyForAuthentication: Instance of AuthenticationPrivateKeyOverEC,
this is the private key associated with the above public key.

� ownedCryptoIdentity.publicKeyForKEM: This public key is an instance of KEMPublicKeyOverEC
and allows to perform a KEM encrypt that shall only be decrypted by the owner of the asso-
ciated private key (i.e., of the owner of the corresponding owned cryptographic identity, see
Section 18).

� ownedCryptoIdentity.privateKeyForKEM: Instance of KEMPrivateKeyOverEC, this is the pri-
vate key associated with the above public key.

� ownedCryptoIdentity.secretMACKey: Instance of MACKey.
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OwnedCryptoIdentity (Initializer)

parameters None

in

{0, . . . , 255}∗

AuthenticationPublicKeyOverEC

AuthenticationPrivateKeyOverEC

KEMPublicKeyOverEC

KEMPrivateKeyOverEC

MACKey

serverURL

pka
ska

pke
ske

key

Given a server URL serverURL, a key pair for authentication pka/ska, a key pair for KEM pke/ske,
and a secret MAC key key, the previous initializer returns an instance ownedCryptoIdentity of
OwnedCryptoIdentity. We denote by

OwnedCryptoIdentity(serverURL, pka, ska, pke, ske, key)→ ownedCryptoIdentity

the call to the previous initializer. This initializer works as follows:

1: procedure OwnedCryptoIdentity(serverURL, pka, ska, pke, ske, key)
2: self.serverURL← serverURL

3: self.publicKeyForAuthentication← pka
4: self.privateKeyForAuthentication← ska
5: self.publicKeyForKEM← pke
6: self.privateKeyForKEM← ske
7: self.secretMACKey← key

8: end procedure

OwnedCryptoIdentity.generateOwnedCryptoIdentity

parameters None

in
{0, . . . , 255}∗

PRNG

serverURL

prng

out OwnedCryptoIdentity ownedCryptoIdentity

The previous procedure allows to generate a fresh random owned identity, given a serverURL and
an instance prng of PRNG. We denote by

OwnedCryptoIdentity.generateOwnedCryptoIdentity(serverURL, prng)→ ownedCryptoIdentity

the call to the previous procedure.

1: procedure OwnedCryptoIdentity.generateOwnedCryptoIdentity(serverURL, prng)
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2: (pka, ska)← AuthenticationOverMDC.generateKeyPair(prng)
3: (pke, ske)← KEMOverCurve25519.generateKeyPair(prng)
4: key← HMACWithSHA256.generateKey(prng)
5: return OwnedCryptoIdentity(serverURL, pka, ska, pke, ske, key)
6: end procedure

ownedCryptoIdentity.getCryptoIdentity

parameters None

in

out CryptoIdentity cryptoIdentity

Given an owned identity instance ownedCryptoIdentity, the previous procedure allows to extract the
public informations by returning an instance cryptoIdentity of CryptoIdentity. We denote by

ownedCryptoIdentity.getCryptoIdentity()→ cryptoIdentity

the call to the previous procedure.

1: procedure ownedCryptoIdentity.getCryptoIdentity()
2: return CryptoIdentity(self.serverURL, self.pka, self.pke)
3: end procedure
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Part III

Encodings
Several features of the Olvid engine require the serialization of data and objects as bytes. For
example, storing strongly typed cryptographic keys in a database, or exchanging data with the
server. As most of the data that requires encoding is in binary format, we developped our own
binary-friendly encoding format which is described in this section.

19 Encoding Structure

In this part, we describe the rules for encoding data. The encoding structure is a basic type-length-
value (TLV) encoding similar to ASN1 or BSON.

Identifier Content byte-length Content
(1 byte) (4 bytes)

19.1 Byte Identifiers

The Identifier octet specifies the type of the encoded object. The exhaustive list of all identifiers
considered in these specifications is available in Table 1.

Table 1: List of all identifiers and corresponding number of bytes for determining the content
length.

Identifier Type Section
0x00 Array of bytes 21.2
0x01 64-bit Integer 21.4
0x02 Boolean 21.5
0x80 Unsigned Big Integer 21.6
0x03 List 21.7
0x04 Dictionary 21.8
0x90 Symmetric key 21.10
0x91 Public key 21.11
0x92 Private key 21.12

19.2 Content Byte-Length

The content byte-length specifies the exact number of bytes of the content. This length is always
coded on 4 bytes. We use a big-endian representation, and consider lengths as unsigned 32-bit
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integers. Section 20.1 describes the algorithm used to compute this representation.

20 Byte Representation of Integers and Lengths

We first define a few helpers procedures, allowing to represent unsigned 32-bit integers, signed
32-bit integers, unsigned 64-bit integers, signed 64-bit integers, unsigned big integers and signed
big integers as an array of bytes.

20.1 32-bit Unsigned Integer

Given an unsigned 32-bit integer s, we denote by bytesFromUInt32(s) ∈ {0, . . . , 255}4 the big-endian
representation of s on 4 bytes. More precisely,

bytesFromUInt32(s) =

{
[bs/2563c mod 256, . . . , bs/256c mod 256, s mod 256] if s ∈ [0, 232 − 1],

⊥ otherwise.

We denote by uint32FromBytes the inverse procedure of bytesFromUInt32. Given a 4-byte array
b = [b0, b1, b2, b3] ∈ {0, . . . , 255}4, we have

uint32FromBytes(b) = b3 + b2 × 256 + b1 × 2562 + b0 × 2563.

20.2 64-bit Unsigned Integer

Given an unsigned 64-bit integer s, we denote by bytesFromUInt64(s) ∈ {0, . . . , 255}8 the big-endian
representation of s on 8 bytes. More precisely,

bytesFromUInt64(s) =

{
[bs/2567c mod 256, . . . , bs/256c mod 256, s mod 256] if s ∈ [0, 264 − 1],

⊥ otherwise.

We denote by uint64FromBytes the inverse procedure of bytesFromUInt64. Given a 8-byte array
b = [b0, b1, . . . , b7] ∈ {0, . . . , 255}8, we have

uint64FromBytes(b) = b7 + b6 × 256 + b5 × 2562 + · · ·+ b0 × 2567.

20.3 64-bit Signed Integer

Given a signed 64-bit integer s, we denote by bytesFromInt64(s) ∈ {0, . . . , 255}8 the big-endian
representation of s on 8 bytes. More precisely,

bytesFromInt64(s) =


bytesFromUInt64(s) if s ∈ [0, 263 − 1],

bytesFromUInt64(232 + s) if s ∈ [−263,−1],

⊥ otherwise.

We denote by int64FromBytes the inverse procedure of bytesFromInt64. Given a 8-byte array
b = [b0, b1, . . . , b7] ∈ {0, . . . , 255}8, we have

int64FromBytes(b) = uint64FromBytes(b)− (b0 and 0x80)� 57.
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20.4 Unsigned Big Integer

Given an unsigned integer s, we denote by bytesFromBigUInt(s, `) ∈ {0, . . . , 255}` the big-endian
representation of s on ` bytes. More precisely, if s ∈ [0, 28` − 1],

bytesFromBigUInt(s, `)

=

{
(bs/256`−1c mod 256, . . . , bs/256c mod 256, s mod 256) if 0 ≤ s ≤ 28` − 1

⊥ otherwise.

We denote by bigUIntFromBytes the inverse procedure of bytesFromBigUInt. Given a `-byte
array b = [b0, b1, . . . , b`−1] ∈ {0, . . . , 255}`, we have

bigUIntFromBytes(b) = b`−1 + b`−2 × 256 + · · ·+ b0 × 256`−1

when ` > 0, and 0 otherwise.

20.5 Signed Big Integer

Given a signed integer s, we denote by bytesFromBigInt(s, `) ∈ {0, . . . , 255}` the big-endian repre-
sentation of s on ` bytes. More precisely, if s ∈ [−28`−1, 28`−1 − 1],

bytesFromBigInt(s, `) =


bytesFromBigUInt(s, `) if s ∈ [0, 28`−1 − 1],

bytesFromBigUInt(28` + s, `) if s ∈ [−28`−1,−1],

⊥ otherwise.

We denote by bigIntFromBytes the inverse procedure of bytesFromBigInt. Given a `-byte array
b = [b0, b1, . . . , b`−1] ∈ {0, . . . , 255}`, we have

bigIntFromBytes(b) = bigUIntFromBytes(b)− (b0 and 0x80)� (8`− 7)

when ` > 0, and 0 otherwise.

20.6 Lengths

As stated in Section 19.2, all encodings include a 4-byte Content byte-length where lengths are
considered as 32-bit unsigned integers. Given a content length ` ∈ [0, 232 − 1], we populate the
Content byte-length region using bytesFromUInt32(`). When decoding, this 4-byte Content byte-
length b = [b0, b1, b2, b3] ∈ {0, . . . , 255}4 is mapped to a 32-bit unsigned integer length using
uint32FromBytes(b).

21 Encodings Procedures

In this section, we define several procedures allowing to encode, decode, and manipulate all the
mathematical and abstract objects we consider in these specifications.
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21.1 Common Encoding/Decoding Rules

As opposed to encoding procedures which cannot fail, the decoding procedures may all fail. All
the decoding procedures defined in sections 21.2 to 21.12 execute the following parsing procedure
on an input [b0, b1, . . . , bn] before trying to decode any further:

1: procedure Parse([b0, b1, . . . , bn−1])
2: if n < 5 then return ⊥ end if
3: if b0 is not a known byte identifier then return ⊥ end if
4: `← uint32FromBytes([b1, b2, b3, b4])
5: if 5 + ` 6= n then return ⊥ end if
6: return (b0, [b5, . . . , b5+(`−1)])
7: end procedure

Note that all the known byte identifiers are listed in Table 1.

21.2 Encoding an Array of Bytes

The following procedure returns the encoding of an array of bytes b ∈ {0, . . . , 255}∗:

encodeBytes(b)→ [0x00, bytesFromUInt32(len(b)), b]

We use the byte identifier 0x00 for arrays of bytes. The total length of the encoding of b ∈
{0, . . . , 255}∗ is

` = 1 + 4 + len(b) = 5 + len(b).

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
encoding of an array of bytes, we apply the following procedure:

1: procedure decodeBytes([b0, b1, . . . , bn−1])
2: (byteId, [c0, c1, . . . , c`−1])← Parse([b0, b1, . . . , bn−1])
3: if byteId 6= 0x00 then return ⊥ end if
4: return [c0, c1, . . . , c`−1]
5: end procedure

21.3 Encoding a String

Strings can be directly encoded and decoded by transforming them into byte arrays using UTF-8
encoding and using the array of bytes encoding from the previous section.

encodeString(s)→ encodeBytes(stringToBytes(s, "utf-8"))

decodeString(b)→ bytesToString(decodeBytes(b), "utf-8")
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21.4 Encoding a 64-bit Integer

The following procedure returns the encoding of a 64-bit integer s:

encodeInt(s)→ [0x01, bytesFromUInt32(8), bytesFromInt64(s))

We use the identifier 0x01 for 64-bit integers. The length of the encoding of a 64-bit integer using
the above procedure has a total length of

1 + 4 + 8 = 13.

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
encoding of a 64-bit integer, we apply the following procedure:

1: procedure decodeInt([b0, b1, . . . , bn−1])
2: (byteId, [c0, c1, . . . , c`−1])← Parse([b0, b1, . . . , bn−1])
3: if byteId 6= 0x01 then return ⊥ end if
4: if ` 6= 8 then return ⊥ end if
5: return [c0, c1, . . . , c7]
6: end procedure

21.5 Encoding a Boolean

The following procedure returns the encoding of a Boolean value s ∈ {true, false}:

encodeInt(s)→ [0x02, bytesFromUInt32(1), s ? 0x01 : 0x00]

We use the identifier 0x02 for Booleans. The length of the encoding of a Boolean using the above
procedure has a total length of

1 + 4 + 1 = 6.

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
encoding of a Boolean, we apply the following procedure:

1: procedure decodeBool([b0, b1, . . . , bn−1])
2: (byteId, [c0, c1, . . . , c`−1])← Parse([b0, b1, . . . , bn−1])
3: if byteId 6= 0x02 then return ⊥ end if
4: if ` 6= 1 then return ⊥ end if
5: return c0 == 1
6: end procedure

21.6 Encoding an Unsigned Big Integer

The following procedure returns the encoding of an unsigned big integer s ∈ N on ` bytes:

encodeBigUInt(s, `)→ [0x80, bytesFromUInt32(`), bytesFromBigUInt(s, `)] (1)

Note that encodeBigUInt returns ⊥ if any internal call returns ⊥. We use the identifier 0x80 for
unsigned big integers. The length of the encoding of an unsigned big integer using the above
procedure has a total length of

1 + 4 + ` = 5 + `.
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In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
encoding of an unsigned big integer, we apply the following procedure:

1: procedure decodeBigUInt([b0, b1, . . . , bn−1])
2: (byteId, [c0, . . . , c`−1])← Parse([b0, b1, . . . , bn−1])
3: if byteId 6= 0x80 then return ⊥ end if
4: return bigUIntFromBytes([c0, . . . , c`−1])
5: end procedure

21.7 Packing Elements and Encoding a List

The following pack procedure allows to packs several encoded elements and to specify a byte type
byteId for the resulting container, which is itself an encoded element. Given an arbitrary number
of encoded values encoded val1, encoded val2, . . . ∈ {0, . . . , 255}∗, the pack procedure is defined
as follows:

pack(byteId, encoded val1, encoded val2, . . . )

→ [byteId, uint32FromBytes(`), encoded val1, encoded val2, . . . ] (2)

where ` is the total length of the list content, i.e.,

` = len(encoded val1) + len(encoded val2) + · · ·

In order to unpack an array of n > 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
result of the above pack procedure, we apply the following procedure:

1: procedure unpack([b0, b1, . . . , bn−1])
2: (byteId, innerData)← Parse([b0, b1, . . . , bn−1])
3: encoded vals = []
4: while len(innerData) > 0 do
5: (encoded val, innerData)← extractFirstEncodedValue(innerData)
6: Append encoded val to encoded vals

7: end while
8: return (byteId, encoded vals)
9: end procedure

where the extractFirstEncodedValue removes the first encoded value it finds in its argument and
returns this element and remaining bytes, as follows:

1: procedure extractFirstEncodedValue([b0, b1, . . . , bn−1])
2: if n < 5 then return ⊥ end if
3: `← uint32FromBytes([b1, b2, b3, b4])
4: if n < 5 + ` then return ⊥ end if
5: return ([b0, . . . , b5+(`−1)], [b5+`, . . . , bn−1])
6: end procedure

We provide a specific procedure to encode a list of elements, based on the above pack proce-
dure. The following procedure returns the encoded list of an arbitrary number of encoded values
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encoded val1, encoded val2, . . . ∈ {0, . . . , 255}∗:

encodeList(encoded val1,encoded val2, . . . )

→ pack(0x03, encoded val1, encoded val2, . . . ) (3)

We use the identifier 0x03 for lists.

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
encoding of a list, we apply the following procedure:

1: procedure decodeList([b0, b1, . . . , bn−1])
2: (byteId, encoded vals)← unpack([b0, b1, . . . , bn−1])
3: if byteId 6= 0x03 then return ⊥ end if
4: return encoded vals

5: end procedure

21.8 Encoding a Dictionary

In most programming languages, a dictionary is an associative array where each element is as-
sociated to a string key. We adopt a more restrictive approach in these specifications where we
consider that a dictionary is an associative array where a key is a byte array representing the
UTF-8 encoding of a string, and where a value is an array of bytes representing a proper encoding
of some value.

Given a dictionary dict, the action of associating the value encoded val ∈ {0, . . . , 255}∗ to the
key key ∈ {0, . . . , 255}∗ is denoted

dict[key]← encoded val.

Recovering the encoded value encoded val is denoted

dict[key]→ encoded val or encoded val← dict[key].

The following procedure returns a proper encoding of a dictionary dict respectively associating
the keys key1, key2, . . . with the encoded values encoded val1, encoded val2, . . . :

encodeDictionary(dict)

→ pack(0x04, encodeBytes(key1), encoded val1, encodeBytes(key2), encoded val2, . . . ) (4)

In most programming languages, dictionaries use hash tables and the order of the key is not
deterministic. As a consequence this encoding is not deterministic. Checking the equality of
two encoded dictionaries requires decoding them and comparing the keys and their values (recur-
sively).

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
encoding of a dictionary, we apply the following procedure:

1: procedure decodeDictionary([b0, b1, . . . , bn−1])
2: (byteId, encoded vals)← unpack([b0, b1, . . . , bn−1])
3: if byteId 6= 0x04 then return ⊥ end if
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4: if len(encoded vals) is not even then return ⊥ end if
5: dict← empty dictionary
6: while len(encoded vals) > 0 do
7: (encoded key, val)← pop the first two elements of encoded vals

8: key← decodeBytes(encoded key)
9: dict[key]← val

10: end while
11: return dict
12: end procedure

21.9 Encoding a Cryptographic Key

As explained in Section 3.2, cryptographic keys are not always considered as a “simple” byte
array within these specifications. Instead they are instances of a Key class that provides conve-
nience values allowing to provide robust encoding/decoding procedures. See Section 3.2 for more
details.

All cryptographic keys are encoded in the exact same way. The following procedure returns a
proper encoding of a cryptographic key key of type Key:

1: procedure encodeKey(key)
2: encoded byteIds← encodeList([key.algoClassByteId, key.algoImplemByteId])
3: encoded dict← encodeDictionary(key.dict)
4: return pack(key.encodingByteId, encoded byteIds, encoded dict)
5: end procedure

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be
the encoding of a cryptographic key for a specific KeyedAlgo, the following procedure will be
systematically used within the decoding of a cryptographic key:

1: procedure preDecodeKey([b0, b1, . . . , bn−1])
2: (byteId, encoded vals)← unpack([b0, b1, . . . , bn−1])
3: if len(encoded vals) 6= 2 then return ⊥ end if
4: byteIds← decodeList(encoded vals[0])
5: if len(byteIds) 6= 2 then return ⊥ end if
6: algoClassByteId← byteIds[0]
7: algoImplemByteId← byteIds[1]
8: dict← decodeDictionary(encoded vals[1])
9: return (algoClassByteId, algoImplemByteId, dict, byteId)

10: end procedure

21.10 Encoding a Symmetric Key

A symmetric key is a particular cryptographic key and is an instance of the type SymKey (see
Section 3.2.1). The following procedure returns a proper encoding of a symmetric key symKey,
instance of SymKey:

encodeSymKey(symKey)→ encodeKey(symKey)
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Note that symKey.encodingByteId = 0x90 for symmetric keys.

Within these specifications, a symmetric keyed cryptographic algorithm SymKeyedAlgo (such as
a block cipher, a MAC, etc.) always provides an initializer SymKeyInit that, given an algorithm class
byte identifier, an algorithm implementation byte identifier and a dictionary, returns a symmetric
key. This initializer fails, e.g., when the dictionary is not appropriate.

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
encoding of a symmetric key for a specific symmetric key algorithm SymKeyedAlgo, we apply the
following procedure:

1: procedure decodeSymKey([b0, b1, . . . , bn−1])
2: (algoClassByteId, algoImplemByteId, dict, byteId)← preDecodeKey([b0, b1, . . . , bn−1])
3: if byteId 6= 0x90 then return ⊥ end if
4: return SymKeyedAlgo.SymKeyInit(algoClassByteId, algoImplemByteId, dict)
5: end procedure

21.11 Encoding a Public Key

A public key is a particular cryptographic key and is an instance of PubKey (see Section 3.2.2).
The following procedure returns a proper encoding of a public key pubKey:

encodePubKey(pubKey)→ encodeKey(pubKey)

Note that pubKey.encodingByteId = 0x91 for public keys.

Within these specifications, a public key cryptographic algorithm PubKeyedAlgo (such as a
digital signature scheme, a public key encryption scheme, etc.) always provides an initializer
PubKeyInit that, given an algorithm class byte identifier, an algorithm implementation byte iden-
tifier and a dictionary, returns a public key. This initializer fails, e.g., when the dictionary is not
appropriate.

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be the
encoding of a public key for a specific public key cryptographic algorithm PubKeyedAlgo, we apply
the following procedure:

1: procedure decodeSymKey([b0, b1, . . . , bn−1])
2: (algoClassByteId, algoImplemByteId, dict, byteId)← preDecodeKey([b0, b1, . . . , bn−1])
3: if byteId 6= 0x91 then return ⊥ end if
4: return PubKeyedAlgo.PubKeyInit(algoClassByteId, algoImplemByteId, dict)
5: end procedure

21.12 Encoding a Private Key

A private key is a particular cryptographic key and is an instance of PrivKey (see Section 3.2.3).
The following procedure returns a proper encoding of a private key privKey:

encodePrivKey(privKey)→ encodeKey(privKey)

Note that privKey.encodingByteId = 0x92 for private keys.
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Within these specifications, a public key cryptographic algorithm PubKeyedAlgo (such as a
digital signature scheme, a public key encryption scheme, etc.) always provides an initializer
PrivKeyInit that, given an algorithm class byte identifier, an algorithm implementation byte iden-
tifier and a dictionary, returns a private key. This initializer fails, e.g., when the dictionary is not
appropriate.

In order to decode an array of n ≥ 0 bytes [b0, b1, . . . , bn−1] ∈ {0, . . . , 255}n assumed to be
the encoding of a private key for a specific public key cryptographic algorithm PubKeyedAlgo (see
Section 21.11), we apply the following procedure:

1: procedure decodeSymKey([b0, b1, . . . , bn−1])
2: (algoClassByteId, algoImplemByteId, dict, byteId)← preDecodeKey([b0, b1, . . . , bn−1])
3: if byteId 6= 0x92 then return ⊥ end if
4: return PubKeyedAlgo.PrivKeyInit(algoClassByteId, algoImplemByteId, dict)
5: end procedure
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Part IV

Message Structure and
Communication Channels

There are two main categories of messages in Olvid:

� Application messages, containing the text messages and attachments the user exchange using
the application

� Protocol messages, which are internal messages, usually not displayed to the user, sent di-
rectly by the protocol engine (see Part V)

Application messages. They are the only messages to have attachments and are always sent through
what we call Oblivious Channels. In Olvid, an Oblivious Channel is a secure channel between two
devices (the creation of such channel is described in the channel creation protocol of Section 25), us-
ing symmetric encryption with 1-time keys (see Section 23.1 for encryption details). An application
message can then be sent to:

� either all the devices of a single user (in the case of one-to-one discussions),
� or all the devices of multiple users (in the case of group discussions).

Protocol messages. They can be sent through a variety of channels: network channels (of course),
but also a variety of “local” channels where the message never leaves the device. Typical exemples
are dialog messages which prompt the user with an accept / reject dialog (like when receiving an
invitation) or where the user can enter an input (like during the SAS exchange). We will not discuss
these local messages here and only focus on message which are sent through network channels and
thus need to be encrypted.

Network protocol messages can be sent through:

� an asymmetric channel, either in broadcast to an identity, or in unicast or multicast to one
or several devices of the same user,

� an Oblivious Channel, either in unicast to one specific device, or in multicast to all the
devices of an identity.

22 General Message Structure

A message is composed of three different parts:

� a message header for each device this message is sent to,
� the message itself, containing the protocol message payload, or the application message text

and attachment keys and metadata,
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� attachments, which are sent/received after the message is uploaded/downloaded.

Message headers only contain a wrapped key. The way this key is wrapped depends on the
type of channel the message is sent on (Oblivious Channel or asymmetric channel), and the key
itself is used to encrypt the message. This way, the message (and attachments) can be uploaded
once while still being delivered to multiple users: one header will be uploaded for each destination
device. As headers are small (about 100 bytes), sending a message to a large number of device is
possible, but this structure is not well suited for very large groups.

When sending an application message to multiple users (for a group message), different headers
will be associated to different identity, but the message and attachment can still be uploaded
only once. One exception to this is when the users are on different servers: in this case the message
will be uploaded once to each server.

Attachments are split in chunks before being sent. See Section 23.2 for more details.

A (decrypted) message always has the same structure, it is an encoded list of:

� an integer identifying the message type (protocol or application),
� an encoded list of elements (the elements depend on the type).

The following sections detail the structure of this encoded list of elements.

22.1 Protocol Message Structure

For a protocol message, the encoded list of elements contains 4 elements:

� an integer identifying the protocol Id (see Table 2),
� a 32-byte unique protocol instance identifier corresponding to the protocolUid,
� an integer identifying the protocol message Id (each protocol has its own set of message Id),
� an encoded list of message inputs.

The first 3 elements are used by the protocol engine to identify which protocol step to run,
and which internal protocol state to recover. The encoded list of message inputs is the effective
serialized payload of the protocol message, which is given as input to the protocol step being
run.

22.2 Application Message Structure

For an application message, the encoded list of elements contains 1 more element than the number
of attachments (so only 1 element for messages without attachments). So for a message with n
attachments, this is:

� n encoded lists, each containing:
– an encoded authenticated encryption key, used to encrypt/decrypt the attachment
– an encoded String corresponding to the attachment metadata JSON (see below).

� an encoded message payload JSON (see below).

Attachment metadata JSON:
{

"type": String, // attachment MIME type
"fileName": String,
"sha256": byte[] // attachment SHA256 hash

}

Message payload JSON:
{

"message": <Message content>,
"rr": <Return receipt>,
"rtc": <WebRTC message>,
"settings": <Ephemeral message settings>

}
rr and message are present for text messages. rtc is set
for WebRTC signaling messages. settings message allow
to set the shared default ephemeral message settings for
a discussion.
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Message content:
{

"body": String, // message text
"ssn": int, // sender sequence number
"sti": UUID, // sender thread identifier
"guid": byte[], // group identifier
"go": byte[], // group owner identity
"re": <Message reply>,
"exp": <Message expiration>

}
guid and go allow determining which group discussion this
message is part of. Message reply is present if the message
is a reply to another message.

Message reply:
{

"ssn": int, // sender sequence number
"sti": UUID, // sender thread identifier
"si": byte[] // sender identifier

}
These elements allow identifying the original message, if
not deleted yet.

Message expiration:
{

"ex": int, // existence duration (in seconds)
"vis": int, // visibility duration (in seconds)
"ro": boolean // read-once message

}
Read-once and limited visibility duration messagesare
wiped after being seen once, or a certain time after being
seen. Limited existence duration is relative to the times-
tamp at which a message was posted on the server.

Return receipt:
{

"nonce": byte[],
"key": byte[]

}

WebRTC message:
{

"ci": UUID, // call identifier
"mt": int, // message type
"smp": String // serialized message payload

}

Ephemeral message settings:
{

"version": int, // settings version
"guid": byte[], // group identifier
"go": byte[], // group owner identity
"exp": <Message expiration>

}
guid and go allow determining which group discussion
these settings should be applied to. Message expiration
defines the default expiration setting for following mes-
sages.

23 Encryption

23.1 Message Encryption

The message itself is always encrypted with an authenticated encryption symmetric primitive. The
authenticated encryption key is generated at random when sending the message and wrapped in
the headers. The key wrap method of the headers depend on the channel the message is being sent
on, but the size of the header is the same for both methods.

Asymmetric channel. This uses the recipient’s identity encryption public key to wrap the message
key. Wrapping here is a simple KEM/DEM. The header contains the concatenation of:

� a KEM ciphertext (32 bytes),
� the DEM of the encoded message key.

Oblivious channel. Oblivious channels use a self ratchet system (in combination with the full
ratchet described in Section 32) which allows to generate a series of authenticated encryption keys
and key Ids (32-byte random identifier). The key Id allows the recipient to efficiently identify
which key to use for decryption. The header contains the concatenation of:

� a key Id (32 bytes),
� the authenticated encryption of the encoded message key.

23.2 Attachment Encryption

Each attachment is encrypted using a random authenticated encryption key (sent with the mes-
sage). Attachments are split in chunks of size determined by the sender (current implementation
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always uses chunks of 2MB). The chunk size is actually the encrypted chunk size, so the plain-
text size is a little smaller. Each chunk of the attachment is independently encrypted with the
authenticated encryption key.

23.3 Return Receipt Encryption

Return receipt encryption is very similar to message encryption on an Oblivious channel. Each
received application message contains a nonce and authenticated encryption key. The authenticated
encryption key allows to mask the identity of the sender return receipt as well as its nature
(received or read), and the nonce allows the message sender (return receipt recipient) to identify
which key to use for decryption.
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Part V

Cryptographic Protocols
The Olvid engine runs a protocol manager able to execute cryptographic protocols step by step,
similarly to finite state automatons. Each protocol is thus defined by a number of possible states
(including an initial state and a set of final states), transitions between these states called protocol
steps, and messages triggering the execution of such steps.

Protocol messages are sent and received over the network and must be serialized. In order for
the recipient to identify the cryptographic protocol a message corresponds to and the nature of
the message itself, each cryptographic protocol implemented in Olvid is assigned a unique protocol
ID, and each possible message in the protocol is assigned a message ID. The list of all protocol IDs
is included in Table 2. The protocol ID and message ID of a message are serialized alongside the
message payload.

ID Protocol name

0 Device Discovery Protocol (see Section 26)
2 Channel Creation with Contact Device Protocol (see Section 25)
3 Device Discovery Child Protocol (see Section 26)
4 Contact Mutual Introduction Protocol (see Section 27)
6 Identity Details Publication Protocol (see Section 28)
7 Contact Picture Download Child Protocol (see Section 28)
8 Group Invitation Protocol (see Section 29)
9 Group Management Protocol (see Section 30)
10 Oblivious Channel Management Protocol (see Section 31)
11 Trust Establishment Protocol with SAS (see Section 24)
12 Trust Establishment Protocol with Mutual Scan (coming soon)
13 Full Ratchet Protocol (see Section 32)
14 Group Picture Download Child Protocol (see Section 30)

Table 2: List of protocols implemented in Olvid and their corresponding protocol ID.

In addition, each execution of a protocol is identified by a unique identifier, the protocolUid,
which is stored alongside the state of the protocol and is included in any protocol message. This
allows a user running multiple instances of the same protocol to uniquely identify which instance a
message is related to. The protocolUid should be kept secret and only shared between legitimate
parties to the protocol.

When a protocol message is received, the protocol manager:

� decodes the protocol ID, message ID and protocolUid

� looks up the protocolUid in its database of protocol states
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– if a state is found it is restored
– if no state is found, a new initial state for the corresponding protocol is created

� finds a protocol step to execute, matching the state and the message
– if a step matches, it is executed
– if no step matches, the protocol message is stored “for later use”

� at the end of the step execution
– if the protocol reached a final state, everything related to this protocolUid is erased
– if it reached a non-final state, the current protocol state is update in the database

Note that during a protocol step execution many different actions are performed, but these
actions can only be database modification operations: no direct network operations or user interface
interactions. This way, after a successful step execution, all the modifications can be committed
atomically to the database, and if the execution is interrupted it can be replayed at the next
protocol manager start.

24 Trust Establishment Protocol with SAS

24.1 Purpose and High Level View

The Trust Establishment Protocol with SAS represented on Figure 2 allows two users to mu-
tually authenticate each other’s cryptographic identity. The protocol typically starts when Al-
ice obtains Bob’s identity by means of some untrusted channel (such as email, sms, WhatsApp,
etc.). Using this identity (assumed to be that of Bob), Alice starts the protocol by executing the
SendCommitment step. When receiving this protocol message, Bob gets a chance to accept or reject
the invitation, i.e., to continue or abort the protocol. Bob can do so on any of his devices.

If Bob accepts, the protocol continues until an 8-digit SAS is generated on the basis of the
transcript of the protocol. Assuming no man-in-the-middle attack occurred, the SAS will be
identical on Alice and Bob’s sides (on all of their devices). Four of these digits are displayed to
Alice, the other four being displayed to Bob. At this point, Alice and Bob should exchange their
digits on an authenticated channel (e.g., face-to-face or phone call, the channel is not required to
be confidential). If the digits match, both Alice and Bob are ensured to know about their true
identities, i.e., that their public keys are authentic.

An adversary modifying the messages and trying to perform a man-in-the-middle attack has a
success probability of 10−8.

24.2 Cryptographic Details

Commitment. In the SendCommitment step, Alice computes a commitment using the scheme of
Section 9 with inputs: her identity as the tag and a random seedForSas she just generated as
the value.

Bob stores all the commitments he ever received in a database to avoid commitment replay.
Indeed, to make this protocol work in a multi-device setting, the seedForSasBob is computed
deterministrically from the randomness sent by Alice. This meens that with commitment replay,
it would be possible to guess Bob’s response and improve the probability of success of a Man-in-
the-Middle attack. This database prevents this.

Page 85/131



Specifications of Olvid - Application and Server

 

contactIdentityCoreDetails

AsymmetricChannelBroadcast
to contactIdentity

contactIdentity
contactIdentityCoreDetails

[contactDeviceUid]
commitment

Trust Establishment Protocol with SAS
Part 1

INITIAL_STATE INITIAL_STATE

ontactIdentity
contactIdentityCoreDetails
[contactDeviceUid]
commitment
dialogUuid

WAITING_FOR_CONFIRMATION

contactIdentity
decommitment
seedAliceForSas 
dialogUuid

  WAITING_FOR_SEED contactIdentity
contactIdentityCoreDetails
[contactDeviceUid]
commitment
seedBobForSas
dialogUuid

WAITING_FOR_DECOMMITMENT

SendCommitment

StoreAndPropagateCommitmentAndAskForConfirmation

StoreDecommitment

StoreCommitmentAndAskForConfirmation

All ObliviousChannels
With Other Owned Devices

contactIdentity
contactDisplayName
decommitment
seedForSas

All ObliviousChannels
With Other Owned Devices

contactIdentity
contactIdentityCoreDetails
[contactDeviceUid]
commitment

ReceiveConfirmationFromOtherDevice

SendSeedAndPropagateConfirmation
 
invitationAccepted

multicast on AsymmetricChannel
to contactIdentity/[contactDeviceUid]

seedBobForSas
[contactDeviceUid]
contactIdentityCoreDetails

All ObliviousChannels
With Other Owned Devices

invitationAccepted

contactIdentity
contactIdentityFullDisplayName
ownIdentityCoreDetails

Figure 2: Trust Establishment Protocol with SAS (part 1)
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Figure 3: Trust Establishment Protocol with SAS (part 2)
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SAS computation. Once a user has both seedForSasAlice and seedForSasBob, he can compute
the 8-digit SAS as follows:

1: procedure ComputeSAS(seedForSasAlice, seedForSasBob, identityBob)
2: hash← SHA256(identityBob‖seedForSasAlice)
3: seed← hash⊕ seedForSasBob
4: Initialize prng, a PRNGWithHMACWithSHA256 using seed

5: SAS ← prng.bigInt(108)
6: end procedure

25 Channel Creation with Contact Device Protocol

25.1 Purpose and High Level View

The Channel Creation with Contact Device Protocol represented on Figure 4 allows two mutually
authenticated users, say Alice and Bob, to create an secure channel from Alice to Bob, and another
secure channel from Bob to Alice.

This protocol typically starts whenever a new contact is inserted in the database of trusted
contacts, or when a new device is added to the list of the contacts’ owned devices. This means
that both parties will start the protocol, still a single instance should finish. Also, both parties
might not trust each other at the exact same time (typically, in the SAS protocol of Section 24,
one party will enter their SAS before the other). For this reason the protocol is architectured in
the following way:

� the protocol starts with a ping stating something along the line: “I’m sending a ping because
I trust your identity, but don’t have a channel with your device”. This ping is sent as soon
as the contact deviceUid is created.

� this ping is sent through an asymmetric channel, and must be signed to guarantee its origin
� depending on the actual deviceUid of Alice and Bob, the smallest deviceUid (with respect

to lexicographical ordering of the bytes of the uid) assumes the role of Alice (on the right in
Figure 4)

� if Alice or Bob receives a ping from an identity they do not trust yet, they discard it
� if Alice receives a ping from Bob and trusts his identity, she replies with a ping
� if Bob receives a ping from Alice and trusts her identity, he actually starts the protocol by

sending an ephemeral key
� as soon as Alice or Bob receives the ack (final steps of the protocol), they confirm the channel

and can start using it to send messages
� in practice, receiving any message on the channel is also enough to confirm it

25.2 Cryptographic Details

Signature. The signature uses the signature/authentication key inside the identity of the party
sending the ping. When Alice sends a ping, this signature is computed over the concatenation
of:

� a constant prefix “channelCreation”
� the deviceUid of Bob
� the deviceUid of Alice
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� the identity of Bob
� the identity of Alice
� a random 16-byte padding (also included in the signature)

Each participant stores all the signatures they ever received from other users to prevent ping
replay. Without this, an adversary could simply replay a ping message to force Alice and Bob to
recreate a channel, thus effectively performing a denial of service on them.

KEM and seed computation. The ephemeralPublicKey exchanged during the protocol are KEM
keys, allowing to send ciphertexts c1 and c2 and to recover authenticated encryption keys k1 and
k2.

These keys k1 and k2 are used to compute a seed in a following way:

� initialize a prng with a 32-byte all 0 seed
� encrypt the 32-byte all 0 plaintext with k1 and the previous prng
� encrypt the 32-byte all 0 plaintext with k2 and the previous prng
� concatenate the ciphertexts obtained in the 2 previous steps and hash them
� the output of the hash is the seed

This seed is then diversified (using Alice’s and Bob’s deviceUid) into a send seed and a receive
seed then used by Alice and Bob to initialize each direction of the channel.

26 Device Discovery Protocol

26.1 Purpose and High Level View

The device discovery protocol is a simple protocol allowing to discover the set of all deviceUid of
a given identity. Before being able to retrieve messages for a specific deviceUid, a device must
register itself to the server. This way, the server always knows which deviceUid exist for a given
identity.

Thanks to this, the device discovery protocol simply queries the server associated to the
identity, which responds with the list of deviceUid. This query is anonymous (no need to
authenticate to the server).

In practice, the protocol is split in two parts:

� a child protocol in charge of querying the server and getting the set of deviceUid
� the parent protocol which takes the set of deviceUid returned by the child protocol, and

updates the contact database.

The purpose of this architecture is to allow for other protocols to run the device discovery
child protocol without necessarily adding the received set of deviceUid to the database. At the
moment, no other protocol does this. . .

26.2 Cryptographic Details

There is no cryptography involved in this protocol.
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27 Contact Mutual Introduction Protocol

27.1 Purpose and High Level View

This protocol allows a user to introduce two users he is in contact with to each other.

Suppose Alice is in contact with Bob and Dave. This protocol allows her to push Bob’s identity
to Dave and Dave’s identity to Bob. Bob and Dave can then chose to trust Alice and add the
identity she sent them to their contact database, without ever having to exchange a SAS, and
without the need for an authentic channel between them. Here, Alice plays the role of a trusted
third party distributing cryptographic keys. If she decides to manipulate the identities shes sends,
Bob and Dave have no way to directly detect it. Still, at any time, Bob and Dave can verify the
keys by running an instance of the Trust Establishment with SAS protocol (see Section 24).

Note that depending on the trust level between Bob and Alice (resp. Dave and Alice), the
contact introduction may be automatically accepted by Bob (resp. Dave). This is easily configured
in the app, but not through a user setting. Future versions of the app will probably never accept
an introduction automatically.

27.2 Cryptographic Details

Signature. The signature uses the signature/authentication key inside the identity of the party
sending the notification that they accepted the contact introduction. As the notification is sent
through an asymmetric channel, this signature is necessary to authenticate Alice/Bob and guar-
antee that it is indeed Alice/Bob accepting the contact introduction. When Alice sends the noti-
fication, this signature is computed over the concatenation of:

� a constant prefix “mutualIntroduction”
� the identity of the mediator (the party running the IntroducContacts step)
� the identity of Bob
� the identity of Alice
� a random 16-byte padding (also included in the signature)

28 Identity Details Publication Protocol and Contact Picture

Download Child Protocol

28.1 Purpose and High Level View

All the trust establishment protocols implemented in Olvid (SAS, contact introduction or group
creation) take care of exchanging an up to date version of the contact details (name, position,
company, etc.). Still, when a user updates his own details and publishes them, all his contacts
must be informed. This is the purpose of this protocol.

When a profile picture is set for these details, it is encrypted and uploaded to the server before
sending the details to all contacts. On the contact side, the details are received and this triggers
the contact picture download child protocol if a picture is present.
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28.2 Cryptographic Details

Profile picture encryption. When a new picture needs to be uploaded, a random label (byte ar-
ray) is generated along with an AES256CTRHMACSHA256Key (see Section 11.1). Knowledge of
the label and the identity of the uploader is sufficient to download the encrypted picture, the
authenticated encryption key allows to decrypt the picture and verify that it was not manipulated
by the server.

29 Group Invitation Protocol

29.1 Purpose and High Level View

This protocol allows a group owner to invite a user to join the group. When a group is created (see
Section 30), an instance of this protocol is run independently with each pending group member.
Every time a user is added to the group, this protocol is run with him.

This protocol takes as input the identity of the contact to invite, the group information
(group identifier and group details) as well as the set of all group members and pending members
(including their identity details). This way, the invited member can identify who is in the group
even if they are not in contact with him.

When receiving an invitation to join a group, similarly to the Contact Introduction Protocol
(see Section 27), the behavior depends on the level of trust with the group owner. The user may
auto-accept the invitation or be asked for a confirmation. This is easily configured in the app, but
not through a user setting. Future versions of the app will probably let users choose whether they
want to auto-accept group invitations or not.

The ReCheckTrustLevel step is here to handle cases where the trust level of the group owner
increases, switching from a trust level requiring confirmation to an auto-accept trust level.

29.2 Cryptographic Details

There is no cryptography involved in this protocol. All messages are exchanged through oblivious
channels, which is enough to ensure their authenticity.

30 Group Management Protocol

30.1 Purpose and High Level View

This protocol is in fact a collection of “1-step” protocols related to group management which all
start from an empty initial state and end in a final state. It uses a deterministic protocolUid for
when group ownership transfer is implemented. As of today, having a deterministic protocolUid

is not useful.

The micro-protocols are:

� Initiate the creation of the group: creates the group in database and launches all the group
invitation protocols (see Section 29)
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Figure 7: Group Invitation Protocol
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� Notify group members that the members of the groups have changed (with the corresponding
step to process group members change on the member side). On the group owner side, this
micro-protocol also takes care of uploading the group “profile picture” if required, and of
downloading it on the members side.

� Add members to a group (and launch the group invitation protocols)
� Remove members from a group (and the corresponding member-side step to “get kicked”

from a group)
� Reinvite someone to a group after he declined an invitation
� Disband a group when the owner wants to remove everyone (all users receive a “kick” message)
� Leave a group you do not own
� Query the group owner for the latest group members (and the corresponding owner-side step

to send group members)
� Two steps to reinvite an actual group member and forcibly push an updated group members

list to a member. These steps are used after an oblivious channel is reconstructed (typically
after a backup restore) to make sure all group members are in sync with the group owner.

30.2 Cryptographic Details

There is no cryptography involved in this protocol. All messages are exchanged through oblivious
channels, which is enough to ensure their authenticity. Each group has an owner attached to its
definition, and members can check that messages are indeed received from the group owner through
an oblivious channel.

31 Oblivious Channel Management Protocol

31.1 Purpose and High Level View

This protocol serves the same purpose as the group management protocol (see Section 30), but for
a one-to-one relation. It currently contains a single 1-step protocol which is run when a contact
is deleted. This protocol makes sure that when Alice removes Bob from her contact list, Bob’s
oblivious channel with Alice is also destroyed and Alice his removed from Bob’s contacts.

31.2 Cryptographic Details

There is no cryptography involved in this protocol. All messages are exchanged through oblivious
channels, which is enough to ensure their authenticity.

32 Full Ratchet Protocol

32.1 Purpose and High Level View

The full ratchet protocol allows to completely refresh the encryption keys of an oblivious channel
in a way similar to what is done during the Channel Creation Protocol (see Section 25). The main
differences are that this protocol only refreshes one direction of the channel at a time and that
is can use the oblivious channels already established, making it much simpler than the channel
creation.
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Figure 8: Full Ratchet Protocol
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This protocol is triggered automatically after Alice sends a message to Bob if more than 100
messages were sent since the last full ratchet or if the last full ratchet was more than a week ago.
This protocol is designed in a way allowing it to be restarted in the middle of a full ratchet. This
guarantees that even if Bob receive Alice’s message in disorder he will be able to decrypt all of
them properly, without the full ratchet interfering.

32.2 Cryptographic Details

The cryptography of the full ratchet is exacly the same as in the Channel Creation with Contact
Device Protocol (see Section 25), except that no signature is required as users already have an
oblivious channel guaranteeing the authenticity of the messages.
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Part VI

Keys and Contacts Backup
The Olvid engine implements mechanisms to allow a user to backup the long term key pairs of his
identity as well as the identity of his trusted contacts and the groups he belongs to.

Of course, backups should never be done in clear and encrypting them with a password would
be way too weak for most users. So before proceeding to a backup, a strong backup key must be
generated. In practice this backup key is a seed used with a PRNG as described in Section 33.

Then, a backup is a JSON string (formatted as described in Section 34.1) containing dumps
from the identity databases. This JSON string is first compressed, then encrypted using the backup
key (see Section 34.2) and can be either exported to a file, or uploaded automatically to the cloud
(iCloud for the iOS client, Google Drive for the Android client).

33 Backup Seed

33.1 Seed Format

An Olvid backup key is a 160-bit seed which is presented to the user as 8 strings of 4 characters
(see Figure 9). Each of these 32 characters contains 5 bits of entropy with the correspondance
of Table 3. When displayed to the user, the first of the corresponding character is used (number
or capital letter), but when the user enters the key for a restore, all equivalent characters are
accepted.

Figure 9: Example of an Olvid backup key.
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dec. hex. chars dec. hex. chars dec. hex. chars dec. hex. chars

0 0x00 0, O, o 8 0x08 8 16 0x10 G, g 24 0x18 Q, q

1 0x01 1, I, i 9 0x09 9 17 0x11 H, h 25 0x19 R, r

2 0x02 2, Z, z 10 0x0a A, a 18 0x12 J, j 26 0x1a T, t

3 0x03 3 11 0x0b B, b 19 0x13 K, k 27 0x1b U, u

4 0x04 4 12 0x0c C, c 20 0x14 L, l 28 0x1c V, v

5 0x05 5, S, s 13 0x0d D, d 21 0x15 M, m 29 0x1d W, w

6 0x06 6 14 0x0e E, e 22 0x16 N, n 30 0x1e X, x

7 0x07 7 15 0x0f F, f 23 0x17 P, p 31 0x1f Y, y

Table 3: Backup seed character to 5-bit value correspondance.

33.2 Key Derivation

The backup seed itself is never stored in the application. It is displayed to the user, then a set of
keys are derived from this seed, and some of these keys are stored. This way, it is impossible to
recover the backup decryption key without the seed itself. The derived keys are computed from
the backup seed as follows:

1: procedure DeriveKeys(backupSeed)
2: /* The backupSeed is 0-padded to 32-byte length */

3: seed← backupSeed‖0 . . . 0
4: Initialize prng, a PRNGWithHMACWithSHA256 using seed

5: backupKeyUid← prng.bytes(32)
6: encryptionKeyPair← KEMOverCurve25519.generateKeyPair(prng)
7: macKey← HMACWithSHA256.generateKey(prng)
8: end procedure

Only the backupKeyUid, macKey and public part of encryptionKeyPair are stored in the appli-
cation. The backupSeed and private part of encryptionKeyPair are discarded.

Note that, as of today, the backupKeyUid is not used. It will be used when storing encrypted
backups directly on the Olvid server becomes an option.

34 Backup Contents

34.1 JSON Structure

Each backup contains a JSON object having the following structure. Types in between <> refer
to other intermediate objects defined here. This object naturally has a tree structure, and the
complete path from the object root to any leaf is important to determine the meaning of a leaf.
For example, a Contact groups that is a direct descendants of an Owned identity is a group for
which you are the owner, whereas a direct descendant of a Contact identity is a group owned by
this contact.

Top level object:
{

"engine": {
"identity_manager": [<Owned identity>]

},
"backup_json_version": int,
"backup_timestamp": int

}
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Owned identity:
{

"owned_identity": byte[],
"private_identity": <Private identity>,
"published_details": <Owned identity details>,
"latest_details": <Owned identity details>,
"api_key": String,
"contact_identities": [<Contact identity>],
"owned_groups": [<Contact group>]

}

Private identity:
{

"server_authentication_private_key": byte[],
"encryption_private_key": byte[],
"mac_key": byte[]

}

Owned identity details:
{

"version": int,
"serialized_details": String,
"photo_server_label": byte[],
"photo_server_key": byte[]

}

Contact identity:
{

"contact_identity": byte[],
"trusted_details": <Contact identity details>,
"published_details": <Contact identity details>,
"trust_level": String,
"trust_origins": [<Contact trust origin>],
"contact_groups": [<Contact group>]

}

Contact identity details:
{

"version": int,
"serialized_details": String,
"photo_server_label": byte[],
"photo_server_key": byte[]

}

Contact trust origin:
{

"trust_type": int,
"mediator_or_group_owner_identity": byte[],
"mediator_or_group_owner_trust_level_major": int

}

Trust type is one of 0 (SAS exchange), 1 (group invita-
tion), 2 (contact introduction).

Contact group:
{

"group_uid": byte[],
"published_details": <Contact group details>,
"latest_details": <Contact group details>,
"trusted_details": <Contact group details>,
"group_members_version": int,
"members": [<Group member>],
"pending_members": [<Pending group member>]

}

Latest details are only set for groups you own, trusted
only for groups you joined.

Contact group details:
{

"version": int,
"serialized_details": String,
"photo_server_label": byte[],
"photo_server_key": byte[]

}

Group member:
{

"contact_identity": byte[]
}

Pending group member:
{

"contact_identity": byte[],
"serialized_details": String,
"declined": boolean

}

34.2 Backup Encryption

After a backup JSON is generated, it must be encrypted before being exported. This uses the keys
derived when the backup key was generated (see Section 33.2) in the following manner:

� first compress the JSON string (using raw deflate/zlib compression) into a byte array
� then use the KEMPublicKeyOverEC to perform a KEMOverEC.encrypt of the byte array
� compute a HMACWithSHA256.compute of the ciphertext using macKey and append it to the

ciphertext

34.3 Backup Decryption

Backup decryption only happens during a restore (see Section 35). The user must first enter the
backup key from which the keys (including the KEMPrivateKeyOverEC) can be derived. Decryption
is the exact reverse of the encryption, with checks at each step aborting the decryption if it
fails:

� compute a HMACWithSHA256.compute of the ciphertext using macKey and verify it matches
� then use the KEMPrivateKeyOverEC to perform a KEMOverEC.decrypt of the ciphertext
� finally, decompress the plaintext into a JSON string
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35 Backup Restore

The first part of the restoration of a backup is rather straightforward: simply restore each owned
identity in the backup, generate a random deviceUid for the device on which they are restored,
and restore all the contacts and groups associated to this owned identity.

The tricky part is then to make sure that this restored device is in sync with all its contacts
regarding their details, but most importantly that all group members agree on who is member of
a group or not. This is of particular importance when restoring an “outdated” backup. Here are
the different steps run after a restore:

� After a contact is created/restored, a device discovery protocol (see Section 26) is run
� Device discovery adds some deviceUid for each contact, which triggers channel creation

protocols (see Section 25)
� When a channel is created with a contact:

– Each user sends their published owned identity details to the other (part of the ack
messages of the protocol)
_ during this protocol, if the received details version is lower than what is already in
database, a “downgrade” is authorized.

– For every group owned by the other user, query the latest group members (see Sec-
tion 30)

– For every owned group to which the other user belongs, reinvite him and forcibly push
the updated group members (see Section 30)
_ again, in this protocol, “downgrade” of the group members and details is possible
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Part VII

Secure Olvid Calls
Olvid allows payed users to initiate secure phone calls with their contacts. It relies on WebRTC
for all the “heavy-lifting” and uses the established oblivious channels to securely exchange signal-
ing messages. The way call initiation works is very similar to the model used in cryptographic
protocols:

� each call is assigned a random call identifier (an UUID)
� each signaling message has integer “message type”
� each call participant maintains a “state”

36 Olvid Call Signaling Messages

The following message types are exchanged during Olvid secure VoIP calls. Some contain Session
Description Protocol (SDP) data, other simply contain their “message type” to let the correspon-
dant advance to the next protocol step. All messages are exchanged as serialized JSON strings,
encapsulated in a Message payload (see Section 22.2).

ID Call signaling message

0 Start call message
1 Answer call message
2 Reject call message
3 Hanged up message
4 Ringing message
5 Busy message
6 Reconnect call message

Table 4: List of call signaling messages in Olvid.

In addition to signaling messages used to establish the WebRTC connection, a data channel
between participants allows to exchange in-call messages. A single in-call message type exists

ID In-call message

0 Muted data message (indicating whether a participant is muted or not)

Table 5: List of in-call messages in Olvid.

The JSON structure of these messages is as follows:
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Start call message:
{

"sdt": String, // session description type
"sd": byte[], // gzipped session description
"tu": String, // TURN server username
"tp": String // TURN server password

}

Answer call message:
{

"sdt": String, // session description type
"sd": byte[], // gzipped session description

}

Reject call message:
{
}

Hanged up message:
{
}

Ringing message:
{
}

Busy message:
{
}

Reconnect call message:
{

"sdt": String, // session description type
"sd": byte[], // gzipped session description

}

Muted data message:
{

"muted": boolean // true if participant is muted
}

37 Technical Details

37.1 TURN Credentials

All calls in Olvid are relayed through a TURN server. This TURN server runs the coTURN [10]
software and is hosted at turn.olvid.io. Before being able to participate in a call, Olvid has
to authenticate with the server using the TURN REST API protocol [19]. This authentication
mechanism uses a timestamp as the username and a HMAC of this timestamp as the password,
allowing coTURN to run in a completely “anonymous” way. The call iniator queries the Olvid
server for valid credentials (see getTurnCredentials detailed in Section 42.9) and received two
pairs of username/password: one for him, one for the call recipient. Both are valid for 24 hours
but are in fact discarded at the end of the call.

The recipient’s credentials are sent in the start call message, allowing him to participate to the
call without needing him to access the getTurnCredentials.

37.2 Session Description Protocol (SDP)

An SDP (see Figure 10) contains all the required information for the negotiation of a WebRTC
connection. In particular it contains:

� the different channels to create (lines starting with m=). This is one audio channel and one
data channel in Olvid.

� ICE candidates for each channel. These are filtered to only offer TURN relay candidates
(this allows to hide each participant’s IP address to his peer)

� the SHA256 fingerprint of the certificate used for DTLS
� for the audio channel, all the codec options and parameters supported. These are filtered to

only offer constant bit-rate (CBR) Opus, PCMA and PCMU.

The SDP exchanged during the signaling are also accompanied by a session description type
which is always the string “offer” for the start call and reconnect call messages and “pranswer” for
the answer call message.
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v=0

o=- 907333779155719414 2 IN IP4 127.0.0.1

s=-

t=0 0

a=group:BUNDLE 0 1

a=msid-semantic: WMS

m=audio 57544 UDP/TLS/RTP/SAVPF 111 0 8 110 112 113 126

c=IN IP4 15.237.42.185

a=rtcp:9 IN IP4 0.0.0.0

a=candidate:3072461082 1 udp 8331007 15.237.42.185 57544 typ relay raddr 0.0.0.0 rport 0 generation 0 network-id 4 network-cost 10

a=candidate:3072461082 1 udp 8331263 15.237.42.185 52261 typ relay raddr 0.0.0.0 rport 0 generation 0 network-id 4 network-cost 10

a=ice-ufrag:95hC

a=ice-pwd:Zg7QjjhtqaH24W8RDU4UDPkl

a=ice-options:trickle renomination

a=fingerprint:sha-256 20:B9:CB:D5:FA:20:DE:D5:4E:8B:82:B6:52:73:8A:0B:2E:D4:A5:64:EA:FB:06:E5:F1:60:F3:94:E2:D9:E9:7B

a=setup:actpass

a=mid:0

a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=extmap:2 http://www.webrtc.org/experiments/rtp-hdrext/abs-send-time

a=extmap:3 http://www.ietf.org/id/draft-holmer-rmcat-transport-wide-cc-extensions-01

a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:5 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=extmap:6 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id

a=sendrecv

a=msid:- audio0

a=rtcp-mux

a=rtpmap:111 opus/48000/2

a=rtcp-fb:111 transport-cc

a=fmtp:111 cbr=1;minptime=10;useinbandfec=1

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:110 telephone-event/48000

a=rtpmap:112 telephone-event/32000

a=rtpmap:113 telephone-event/16000

a=rtpmap:126 telephone-event/8000

a=ssrc:2169359256 cname:B2s7qDzQUyg2Z8aX

a=ssrc:2169359256 msid:- audio0

a=ssrc:2169359256 mslabel:-

a=ssrc:2169359256 label:audio0

m=application 53302 UDP/DTLS/SCTP webrtc-datachannel

c=IN IP4 15.237.42.185

a=candidate:3072461082 1 udp 8331263 15.237.42.185 53302 typ relay raddr 0.0.0.0 rport 0 generation 0 network-id 4 network-cost 10

a=candidate:3072461082 1 udp 8331007 15.237.42.185 58800 typ relay raddr 0.0.0.0 rport 0 generation 0 network-id 4 network-cost 10

a=ice-ufrag:95hC

a=ice-pwd:Zg7QjjhtqaH24W8RDU4UDPkl

a=ice-options:trickle renomination

a=fingerprint:sha-256 20:B9:CB:D5:FA:20:DE:D5:4E:8B:82:B6:52:73:8A:0B:2E:D4:A5:64:EA:FB:06:E5:F1:60:F3:94:E2:D9:E9:7B

a=setup:actpass

a=mid:1

a=sctp-port:5000

a=max-message-size:262144

Figure 10: Example of Session Description Protocol used in Olvid calls

37.3 Security

WebRTC handles most of the security by itself, the only requirement is to be able to exchange
the SDP over an authentic channel. This is the case in Olvid as the oblivious channels used to
send application messages are used. The SDP contain a fingerprint of the certificate that will
be used in the DTLS negotiation. If the SDP are exchanged over an authentic channels, both
peers are guaranteed to receive an unmodified SDP and to receive the correct fingerprint. From
there, it is impossible for an adversary (even an adversary controlling the TURN server) to run a
man-in-the-middle attack and eavesdrop on the conversations.
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Part VIII

Olvid Server API
This section describes the different API entry point of the Olvid server. This API is composed of
two components:

� a REST API:
– each entry point corresponds to a specific path on the server
– all entry points are accessed with a POST request
– the POST request must indicate a "Content-type: application/bytes" header.
– the POST request should specify a server API version in an "Olvid-API-Version"

header. The current server API version is 11, but older versions of the Olvid application
may still use the same server entry points with a different API version. Not specifying
an API version is equivalent to using API version 0. This section only describes the
latest versions of the entry points, please refer directly to the source code for older
versions.

– each entry point expects a POST body containing an encoded list of elements (see
Part III), or nothing for the few entry points without an input. In the following section,
we will detail the list of items expected by each of these entry points.

– each entry point then outputs an encoded list of elements. The first element of this list
is always a return status in the form of a byte array. The rest of the list contains the
various outputs of the entry point, if any.

– the HTTP return status is always 200, whether or not an error occured. Only the byte
return status is of importance.

� a WebSocket API:
– once connected to the WebSocket server, the client may send or receive messages in the

form of JSON encoded messages
– each message must contain an action key, defining the purpose of this message, which

is similar to the path of the REST API.
– the rest of the JSON message may contain additionnal keys depending on the action

In addition to this, the server may also send some Pre-Signed S3 URL allowing to directly
upload or download a file to or from AWS S3. This is used when uploading or downloading an
attachment, but we will not detail the S3 REST API here, as it is not really a part of the Olvid
Server API. Please refer to [1].

38 Server Authentication API

The folowing two entry points are used when a user authenticates with the server. This registers a
client session with the server, in the form of a (identity, token) pair, which is part of the input
of entry points requiring authentication.
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38.1 Get authentication challenge

The /requestChallenge entry point allows a user to request an authentication challenge from the
server. The server no longer checks the API key at this point, it is done in the /getToken step. The
nonce sent by the user allows mulitple authentications from the same identity simultaneously. It
is sent again (see Section 38.2) with the response to retrieve the corresponding challenge.

/requestChallenge

in

identity

byte[32]

UUID

identity to authenticate

nonce

API key

out

byte[1]

byte[32]

byte[32]

return status

challenge

nonce

return statuses
0x00: OK

0xff: unknown error

38.2 Authenticate and get client session token

After receiving a challenge, the user must compute a response given by the AuthenticationOverEC.solve
primitive described in Section 15. The received token is then stored for later use.

/getToken

in

identity

byte[80]

byte[32]

identity to authenticate

response to the challenge

nonce

out

byte[1]

byte[32]

byte[32]

int

long

long

return status

token

nonce

API key status

API key permissions

API key expiration

return statuses

0x00: OK

0x04: invalid session, unable to retrieve the challenge for this (identity,
nonce) pair

0xff: unknown error (also returned when response validation fails)

API key status. The API key status returned is one of:
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ID Call signaling message

0 Valid API key
1 Unknown API key
2 Number of licences for this API key is exhausted
3 API key expired
4 Beta feature tryout API key
5 Free trial API key
6 API key in grace period (awaiting payment)
7 API key on hold (awaiting payment)
8 Expired free trial API key

If the API key expiration if non-zero, it means the API key has an expiration timestamp. In this
case, the long reprensents the number of milliseconds since Epoch for this timestamp. For expired
key, this timestamp is in the past.

API key permissions. The permissions long is a bit-encoded set of permissions. A 1-bit indicate
the permission is granted, a 0-bit indicate it is denied.

ID Call signaling message

1L� 0 Call permission
1L� 1 Web client permission

Structure of Free Trial API keys. Free trial API keys are designed to be “anonymous” in the sense
that they are not associated to an identity and are never stored in a database. They are composed
of:

� a timestamp in milliseconds since Epoch on 8 bytes
� a HMACWithSHA256 of the 8 timestamp bytes, truncated to 8 bytes

This 16 byte API key is then written as an UUID like other API keys. The HMACWithSHA256Key
used for this computation is stored only on the server and is also used in the /queryApiKeyStatus

and /freeTrial server entry points.

39 API Keys and Subscriptions API

As descriped in the /getToken entry point, all permissions and access to premium features in Olvid
is managed through the API key presented during authentication with the server. The following
entry points allow to check the status of a (not yet activated API key) and to start a 1-month free
trial for a new user. For in-App purchases, the server generates new API key in exchange for a
valid purchase receipt.

39.1 Query API key status

The /queryApiKeyStatus entry point allows a user to query whether the licence activation link
he clicked is indeed valid, and what permissions are associated with it. The output uses the same
values as the /getToken entry point. The identity is used only for already activated licences: if
the API key is already used by someone else, the current user will not be able to activate it.
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/queryApiKeyStatus

in
identity

UUID

identity

API key

out

byte[1]

int

long

long

return status

API key status

API key permissions

API key expiration

return statuses
0x00: OK

0xff: unknown error

39.2 Free trial API key query and retrieval

This entry point allows user whether they are still eligible to a free trial or not, and if yes, allows
them to retreive a free trial API key valid one month. This entry point requires being authenticated.
The free trial API keys have the structure described in Section 38.2.

/freeTrial

in

identity

byte[32]

boolean

identity

Authentication token

true to retrieve the API key, false for an eligibility query

out
byte[1]

UUID

return status

Free trial API key (only in retrieve mode)

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0x0f: free trial already used

0xff: unknown error

39.3 In-App purchase receipt verification

This entry point verifies a purchase receipt from either a Goole Play or an App Store purchase and
returns an API key with the appropriate expiry date if the receipt is valid. For iOS purchases, this
entry point is also used every time a subscription is renewed as a new receipt is sent to the app.
For Android, the /getToken entry point takes care of querying the Google Play server when a user
authenticates to see if his subscription was renewed. Eventhough purchase receipts are signed,
receipt verification is not done on the server, but the server rather queries the Google and Apple
servers which take care of the validation and can provide the mose up-to-date expire time for the
purchase.
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/freeTrial

in

identity

byte[32]

byte[1]

String

identity

Authentication token

Store identifier (0x00 for iOS, 0x01 for Android)

Store purchase receipt

out
byte[1]

UUID

return status

a new API key (or the same as before for iOS renewals)

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0x10: receipt is expired

0xff: unknown error

40 Message Upload API

Uploading a message to the Olvid server happens in two steps:

� the user uploads the message payload
� the user uploads the attachments, chunk by chunk

At any time, the sender may also cancel an attachment upload, allowing recipients to know the
attachment may never be fully uploaded on the server. Note that since the server API version 11,
proof of works are no longer required to send a message.
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40.1 Upload message and get UID

/uploadMessageAndGetUids

in

[encoded vals]

byte[]

boolean

boolean

[encoded vals]

[encoded vals]

list of encoded headers (see details 1 below)

encrypted message payload

message contains an application payload (see details 2 below)

message is a start call VoIP message (see details 2 below)

list of encoded attachment lengths (see details 3 below)

list of encoded attachment chunk lengths (see details 3 below)

out

byte[1]

byte[32]

byte[32]

long

[encoded vals]

return status

message unique identifier on the server

nonce (see details 4 below)

server timestamp

list of private signed urls (see details 5 below)

return statuses
0x00: OK

0xff: unknown error

Detailed description of the different inputs and outputs:

1. Encoded headers: this list contains 3n encoded elements, 3 for each recipient device. For
the i-th device this list contains:

� at position 3i, the encoded deviceUid of the recipient
� at position 3i+ 1, the encoded byte array containing the header payload
� at position 3i+ 2, the encoded identity of the recipient

2. The two booleans isApplicationMessage and isVoipMessage are used when the message
recipient is on an iOS device:

� application messages showing an “heads up” notification must be sent encrypted in the
notification to be received in the notification extension of the application

� VoIP call initiation messages use the special voip push type which allows instant delivery
to CallKit enabled applications.

3. Encoded attachment lengths: the lists of encoded attachment lengths and attachments
chunk length must both contain one length per message attachment. The first list contains
encoded 64-bit integers corresponding to the total byte length of each encrypted attachment.
The second list contains encoded 64-bit integers corresponding to the length of the encrypted
chunks into which the corresponding attachment is split.

4. Nonce: a random 32-byte nonce is received along with the unique message identifier. This
nonce will be required to authenticate the uploader when refreshing attachment urls or can-
celing an attachment upload. Indeed, the message identifier is sent to the recipient of the
message and, for group messages, one group member should not be able to cancel the upload
of an attachment, effectively preventing other group members from receiving the attachment.
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5. Private signed urls: after uploading the message, the user must also upload all the at-
tachments. For each attachment chunk, the server computes a private signed url allowing to
upload it directly to AWS S3, without going through one of the server entry points. The list
of private signed url contains actually contains:

� for each attachment, an encoded list of private signed urls
� these encoded lists contain as many private signed urls as this attachment has chunks.

Each signed url is a string, encoded as described in Section 21.3.

40.2 Refresh private upload signed urls

The private upload signed urls obtained from the upload message entry point have an expiration
date. Past this date, the url becomes invalid and must be refreshed to upload the corresponding
chunk to AWS s3. For historical reason and backward compatibility the path to this entry point
is /uploadAttachment.

/uploadAttachment

in

byte[32]

int

byte[32]

message unique identifier on the server

attachment number

the nonce received when uploading the message

out
byte[1]

[encoded vals]

return status

list of private upload signed urls

return statuses

0x00: OK

0x09: attachment was already deleted from the server

0x0c: invalid nonce

0xff: unknown error

The message unique identifier on the server and the nonce are taken from the output of the
upload message entry point. The attachment number corresponds to the position of this attach-
ment in the attachment lengths lists sent in the upload message entry point. As in the upload
message entry poiny, the list of private signed urls contains many private signed urls as the attach-
ment with the specified number has chunks. Each signed url is a string, encoded as described in
Section 21.3.

40.3 Cancel attachment upload

This tags an attachment as canceled on the server. The consequence is that recipients will only
receive download signed urls for chunks that have actually been uploaded to the server. For
uncomplete attachments, the recipients can know that it will never be completed and cancel its
donwload.
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/cancelAttachmentUpload

in

byte[32]

int

byte[32]

message unique identifier on the server

attachment number

the nonce received when uploading the message

out byte[1] return status

return statuses
0x00: OK

0xff: unknown error

41 Message Download API

41.1 Download messages and list attachments

This entry point retrieves all messages for an identity that are available on the server. Some of
these messages may already have been listed and not deleted yet. In addition, for each message,
it retrieves a list of private signed urls allowing to download its attachment chunks directly from
AWS S3. This list may be truncated to avoid slowing down this entry point too much.

Note that this method retrieves messages for a specific (identity, deviceUid) pair, so it returns
messages that have either been sent to this specific deviceUid (through multicast or unicast), or
are broadcast messages for this identity.

The method also returns a server timestamp to allow devices to measure precisely the age of
downloaded messages, even if the device clock is skewed.

/downloadMessagesAndListAttachments

in

identity

byte[32]

byte[32]

identity

Authentication token

deviceUid

out

byte[1]

long

encoded val

...

return status

current server timestamp (milliseconds since Epoch)

one encoded value for each message (see description below)

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0x0b: deviceUid is not registered (device registration required)

0xff: unknown error

Each message encoded val is an encoded list containing:
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� the encoded byte[32] of the message unique identifier on the server
� the encoded long of the message timestamp
� the encoded byte[] of the header payload
� the encoded byte[] of the encrypted message payload
� for each attachment, an encoded list containing:

– the encoded int of the attachment number
– the encoded long of the encrypted attachment length
– the encoded int of the encrypted attachment chunk length
– the encoded list of encoded String of the private signed urls for attachment chunks

download. This list contains as many element as the number of attachment chunks. If
the entry point is taking too long to execute, these urls may be replaced by dummy
expired urls requiring to be refreshed immediately.

Note that the messages are always sorted before being returned, from oldest to newest, based on
the server timestamp at upload time.

41.2 Refresh private download signed urls

The private download signed urls obtained from the download message and list attachments entry
point have an expiration date. Past this date, the url becomes invalid and must be refreshed to
download the corresponding chunk from AWS s3. For historical reason and backward compatibility
the path to this entry point is /downloadAttachmentChunk.

/downloadAttachmentChunk

in
byte[32]

int

message unique identifier on the server

attachment number

out
byte[1]

[encoded vals]

return status

list of private download signed urls

return statuses

0x00: OK

0x09: attachment was already deleted from the server

0xff: unknown error

If the attachment was not marked as deleted (see Section 40.3), this method returns a valid
private download signed url for each attachment chunk. On the contrary, if the attachment was
marked as canceled, a valid download signed url is returned only for chunks that are actually
available on AWS S3. For other chunks, an encoded empty String is returned instead.

41.3 Delete message and attachments

Once a message and all its attachments have been downloaded by a recipient (identity, deviceUid)
pair, it can notify the server to delete the message and its attachments. The server will indeed
delete the message once all recipients have requested to delete it. In practice, the server sim-
ply deletes the message header corresponding to this (identity, deviceUid) pair, and when no
message header remain for a message, it is deleted.
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/deleteMessageAndAttachments

in

identity

byte[32]

byte[32]

byte[32]

identity

Authentication token

message unique identifier on the server

deviceUid

out byte[1] return status

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0xff: unknown error

Note that if the message was already deleted on the server, this entry point returns OK.

42 Other REST API Entry Points

42.1 Register push notification

In order to be instantly notified of new incoming messages, each user device must be registered on
the server. Depending on the kind of push notifications the device can receive, the server will notify
it through a different service. Note that devices that cannot receive push notifications (typically,
an Android phone without the Google services installed) still need to register with the server as
this registration is also used for device discovery (see Section 42.2).

Note that unless the multi-device option is activated (not available yet), a single device can
be registered on the server for an identity. When restoring Olvid on a new device, the “kick
other devices” boolean should be true to replace the previous deviceUid with the new one on the
server.
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/registerPushNotification

in

identity

byte[32]

byte[32]

byte[1]

extra info

boolean

boolean

identity

Authentication token

deviceUid

push notification type identifier (see below)

push notification extra information (see below)

kick other devices

use multi-device

out byte[1] return status

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0x0a: another deviceUid is already registered (and “kick” is false)

0xff: unknown error

The following push notification type identifiers currently exist on the server. For each of them,
the extra information extra info has a specific format.

� 0x01 - Android: this notification type sends push notifications through Google’s Firebase
Cloud Messaging service. The extra info is a list of encoded elements containing:

– a String containing the device token provided by Firebase, required to send the push
notification to the correct device.

– a byte[32] containing a random masking unique identifier, allowing the device to know
which identity received a message.

The masking unique identifier allows to tell the device which of his identity (in case several
identities are installed on the same device) has received a message. The identity itslef
cannot be sent in the push notification, otherwise it would allow the push notification server
operated by Google to associate an Olvid identity with the real identity of the device owner
(already known by the Firebase Cloud Messaging service).

� 0x04 - iOS with extension: this notification type sends push notifications through the
Apple Push Notification service protuction server and includes the encrypted payload of
application messages in the notification. This allows the notification extension of the iOS
application to notify the user with the decrypted message content while the application is in
the background. The extra info is a list of encoded elements containing:

– a byte[] containing the device token provided by Apple, required to send the push
notification to the correct device.

– a byte[32] containing a random masking unique identifier, allowing the device to know
which identity received a message.

– an optional byte[] containing the device voip token provided by Apple. This is required
to receive voip notifications for incoming Olvid calls, but is not avaible for users who
deactivated CallKit in the App.

The role of the masking unique identifier is the same as in Android notifications.

� 0x05 - iOS sandbox with extension: this notification type is exactly the same as the iOS
with extention, but uses the development server provided by Apple for tests. It is not used
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in the production version of the application.

� 0xff - No notifications: this notification type is for devices which cannot receive push
notifications in the background. It simply allows the device to register on the server for
device discovery. The extra info does not need to contain anything here.

42.2 Device discovery

The device discovery entry point allows anyone to query the server for the list of deviceUid of
a given identity. When adding a new contact in Olvid, this is used to list all the devices with
which a secure channel must be created.

/deviceDiscovery

in identity identity

out
byte[1]

[encoded vals]

return status

list of encoded deviceUid

return statuses
0x00: OK

0xff: unknown error

The output encoded vals contains a list of encoded byte[32], each representing a deviceUid

of the user owning the input identity.

42.3 Unregister push notification

When a deviceUid needs to be de-assossiated from an identity, a user can use the unregister
push notification entry point. This entry point is only of interest in a multi-device scenario.

/unregisterPushNotification

in

identity

byte[32]

byte[32]

identity

Authentication token

deviceUid

out byte[1] return status

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0xff: unknown error

42.4 Upload return receipt

The application has the possibility to notify a message sender that his message was indeed delivered
to the its recipient (or read by the user). This entry point allows to upload return receipt on the
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server. The delivery of the return receipt to the application message sender is then done through
the WebSocket.

/uploadReturnReceipt

in

identity

[encoded vals]

byte[16]

byte[]

identity

list of encoded deviceUid

nonce

encrypted return receipt payload

out byte[1] return status

return statuses
0x00: OK

0xff: unknown error

The list of encoded deviceUid corresponds to the list of devices of the application message
sender. It lets the server know which devices should be notified.

The 16-byte nonce is part of the application message the recipient receives. It is sent back to
the message sender to allow him to identify which key to use to decrypt the return receipt payload.
The content of the payload itself is sent encrypted so as not to disclose any information to the
server about when a message is read. The payload is an encoded list containing:

� the identity of the application message recipient (the sender of the return receipt)
� an int representing the status of the return receipt: 1 for message delivered, 2 for message

read.

Note that return receipts also contain a timestamp which is set by the server during the execution
of this entry point.

42.5 Put user data

This entry point allows users to upload some data associated to a label to the server. Anyone
knowing the identity of the user and the label will then be able to download this data (using the
get user data entry point hereafter). This is used, for example, to upload an encrypted user profile
picture and push this picture to your contacts along with your name.
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/putUserData

in

identity

byte[32]

byte[]

byte[]

identity

authentication token

label

data

out byte[1] return status

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0xff: unknown error

42.6 Get user data

This entry point allows any user to download user data associated to an identity and a label
from the server. Note that downloading user data can be done anonymously, without requiring
authentication.

/getUserData

in
identity

byte[]

identity

label

out
byte[1]

byte[]

return status

data

return statuses

0x00: OK

0x05: data not available (not uploaded yet, or deleted)

0xff: unknown error

42.7 Refresh user data

User data uploaded to the server naturally expires after 90 days. This entry point is used to extend
the expiration date of a user data that is still useful. It is called every week by the application to
refresh its user data.
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/refreshUserData

in

identity

byte[32]

byte[]

identity

authentication token

label

out byte[1] return status

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0x09: the user data was deleted (re-upload required)

0xff: unknown error

42.8 Delete user data

This entry point allows a user to delete obsolete user data he uploaded on the server. Typically,
after changing profile picture, the old picture can be deleted.

/deleteUserData

in

identity

byte[32]

byte[]

identity

authentication token

label

out byte[1] return status

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0xff: unknown error

42.9 Retrieve TURN credentials to initiate a call

This entry point requires a licence with the call permission. When checking the validity of the
token, the server also checks the associated permission. If user is allows to initiate call, the server
returns two timestamped usernames and the associated passwords. The caller and recipient can
use these to authenticate with the TURN server (see Section 37.1).
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/getTurnCredentials

in

identity

byte[32]

String

String

identity

authentication token

username 1

username 2

out

byte[1]

String

String

String

String

return status

timestamped username 1

password 1

timestamped username 2

password 2

return statuses

0x00: OK

0x04: invalid token (re-authentication required)

0x0e: permission denied (call initiation not allowed for user)

0xff: unknown error

43 WebSocket API

When the application is running in the foreground, it continuously stays connected to the Olvid
server through a WebSocket. This WebSocket is currently used to receive new message push
notifications in a more efficient/responsive way than through Apple and Google’s push notification
services and also to receive return receipts. Note that push notifications will be sent though both
the WebSocket and Apple and Google’s services, but return receipts are only sent through the
WebSocket.

The WebSocket is a fully asynchronous 2-way communication channel between the device and
the server. All messages transmitted through the WebSocket are formatted in JSON and must
contain an "action" key determining the scope of this message. As opposed to a REST API,
the channel being asynchronous, the WebSocket API does not expect an immediate response after
sending a message.

43.1 Device registration

As soon as the connection to the WebSocket is established, the device sends a registration message.
This message binds an identity and a deviceUid to the WebSocket, allowing the server to know
through which WebSocket to send information. Note that if multiple identities are configured on
the same device, multiple registration messages can be sent.

Page 121/131



Specifications of Olvid - Application and Server

"action": "register"

direction device→ server

JSON

"identity"

"token"

"deviceUid"

base64-encoded identity

base64-encoded authentication token

base64-encoded deviceUid

In response to this message, the server will send a error message or an acknowledgement message
of the following form.

"action": "register"

direction server→ device

JSON
"identity"

("err")

base64-encoded identity

(optional) int containing the error code

If registration was successful, the "err" key is omitted and the message simply contains the
identity to let the device know which identity was successfully registered. If registration failed,
the "err" key is present and contains a byte (in integer representation) representing the type of
error:

� 0x04: invalid token (re-authentication required)
� 0xff: unknown error

43.2 Message notification

When sending a push notification to the device, if it is connected through a WebSocket and
registered to the identity, the following message is sent.

"action": "message"

direction server→ device

JSON "identity" base64-encoded identity

The server does not expect any response to this message.

43.3 Return receipt download

Once an identity is registered, it will also receive return receipts through the WebSocket. After
a successful registration, the device receives one return receipt message for each pending return
receipt on the server. A message is also sent directly after a return receipt is uploaded if a
WebSocket is currently connected.
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"action": "return receipt"

direction server→ device

JSON

"identity"

"serverUid"

"nonce"

"encryptedPayload"

"timestamp"

base64-encoded identity

base64-encoded byte[32] identifier for this return receipt

base64-encoded byte[16] nonce

base64-encoded byte[] encrypted return receipt payload

long server timestamp of the return receipt upload

The serverUid is a unique identifier used only to delete the return receipt on the server (see next
Section). The nonce allows the application to identify which key was used to encrypt the return
receipt payload. Once decrypted, the return receipt payload is an encoded list containing:

� the identity of the application message recipient (the sender of the return receipt)
� an int representing the status of the return receipt: 1 for message delivered, 2 for message

read

The timestamp is set by the server during the upload return receipt entry point execution (see
Section 42.4).

43.4 Return receipt deletion

Once a return receipt is received on the device, it can be deleted from the server. The device
simply sends the following message.

"action": "delete return receipt"

direction device→ server

JSON "serverUid" base64-encoded byte[32] identifier for this return receipt

The device does not expect any response to this message.

44 Push Notifications Content

44.1 Android - Firebase push notifications

On Android, when the sever receives a message for a registered identity (i.e. an identity

for which a device succesfully called the register push notification entry point describerd in Sec-
tion 42.1), it sends a “background” notification (i.e. a notification without a title and body) to
each registered device. The structure of the push notification is the following.

{
"token": "[token]",
"data": {

"identity": "[identity_mask]"
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}
}

Here token is the push notification token received from the Firebase service on the device, and
identity mask is a random identifier chosen by the device to mask the real identity of the user
(see Section 42.1), sent as an hexadecimal string.

If the device is currently active, with the application in foreground, another notification is sent
through the WebSocket (see Section 43.2).

44.2 iOS - Apple push notifications

On iOS, “background” notifications may be arbitrarily delayed. In order to have notifications
delivered as fast as possible, we have the option to send an “alert” notification containing the title
and body to display in the notification. The content of the notification is encrypted and sent to
a notification extension of the application which takes care of decrypting the title and body. In
addition to this, “voip” notifications are also delivered instantly and are received directly to the
App, but require it to initiate an incoming call flow with CallKit.

Because of this, we distinguish three types of messages on the server, depending on whether
there is something to display to the user and the voip flag is set (see Section 40.1):

� protocol messages without an application payload, triggering only the background notification
� application messages with something to display to the user, triggering both notifications
� voip notifications, triggering an incoming call dialog in CallKit

Background notification. The background push notification has the following structure.

{
"aps": {

"content -available": 1
},
"maskinguid": "[masking_uid]"

}

Here masking uid is a random identifier chosen by the device to mask the real identity of the
user (see Section 42.1), sent as an hexadecimal string.

Alert notification. When sent, the alert notification has the following structure.

{
"aps": {

"alert": {
"title": "Olvid",
"body": "Olvid requires your attention.",
"title -loc -key": "Olvid",
"loc -key": "Olvid requires your attention."

},
"mutable -content": 1

},
"timestamp": [timestamp],
"maskinguid": "[masking_uid]"
"messageuid": "[message_uid]",
"encryptedHeader": "[header]",
"encryptedMessage": "[content]"

}

Here:
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� timestamp is a long corresponding to the message timestamp on the server (milliseconds
since EPOCH)

� masking uid is a random identifier chosen by the device to mask the real identity of the
user (see Section 42.1), sent as an hexadecimal string

� message uid is the unique message identifier on the server, sent as an hexadecimal string
� header is the encrypted header received by the server for this device, sent as a base64 string

(see Section 40.1)
� content is the encrypted message payload received by the server, sent as a base64 string (see

Section 40.1)

When received, the mutable-content flag triggers the call to the Olvid notification extension
which decrypts the header and content and shows a notification to the user. If the notification
extension fails, the default localized title and body are displayed.

VoIP notifications. When sent, voip notifications have the following structure. In addition, specific
APNS flags are set to set its type to voip.

{
"aps": {

"alert": "alert",
},
"timestamp": [timestamp],
"maskinguid": "[masking_uid]"
"messageuid": "[message_uid]",
"encryptedHeader": "[header]",
"encryptedMessage": "[content]"

}

The encrypted content is the same as for alert notifications, with the difference that the content
does not contain a text message, but the SDP of the start call message. VoIP notifications are
limited to 5kB, which is why SDP are gzipped before being sent.
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Appendices

A Elliptic Curves

A.1 Edwards Curves

The elliptic curves considered in these specifications are Edwards curves [7, 8, 12] or are birationally
equivalent to an Edwards curve. Given a finite field F of odd characteristic, an Edwards curve
over F is

E(F) : x2 + y2 = 1 + dx2y2

with d /∈ {0, 1}.

When d is not a square in F, Edwards curves have a complete addition law [8, Theorem 3.3].
Given (x1, y1), (x2, y2) ∈ E(F), the Edwards addition law defined by

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
corresponds to the standard elliptic curve addition law and works for all points (i.e., even if one of
the points is the point at infinity, and even if the points are actually the same point). All curves
used within these specifications are such that d is not a square in F, so the addition law above can
be used.

In what follows, we denote by

� p the prime order of the underlying finite field Fp,
� d the parameter defining the Edwards curve over Fp, such that d is not a square in Fp,
� G = (Gx, Gy) the base point explicitly defined by the curve,
� q the prime order the subgroup generated by G,
� q′ the order of the largest prime subgroup of the twist of E(Fp),
� ν the lcm of the cofactor #E(Fp)/q of the curve and of the cofactor #E′(F)/q′ of the twist
E′ of E.

The neutral element of the group of points of an Edwards curve E over Fp is (0, 1). The point
(0,−1) is the unique point of order 2 [4]. The points (1, 0) and (−1, 0) are the unique points of
order 4. The opposite of a point (x, y) is −(x, y) = (−x, y).

A.2 Equivalence with Montgomery Curves

Any Edwards curve over a finite field F of odd characteristic is birationally equivalent to a Mont-
gomery curve (consequence of Theorem 3.2 in [6]). More precisely the Edwards curve

Ed : x2 + y2 = 1 + dx2y2
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where d is not a square in Fp is birationally equivalent to the Montgomery curve

EA,B : Bv2 = u3 +Au2 + u,

where A = 2(1 + d)/(1 − d) and B = 4/(1 − d) are such that A ∈ F \ {−2, 2} and B ∈ F \ {0}.
The map

(x, y) 7→ (u, v) =

(
1 + y

1− y
,

1 + y

1− y
1

x

)
is a birational equivalence from Ed to EA,B , the inverse mapping being

(u, v) 7→ (x, y) =

(
u

v
,
u− 1

u+ 1

)
.

The only points of Ed for which the mapping is not defined are those for which y = 1 and those
for which x = 0. Since d 6= 1, the only possibilities are

� (0, 1), which is the point at infinity, and
� (0,−1), which is the only point of order 2 of Ed.

Besides the point at infinity, the only points of EA,B for which the inverse mapping is not defined
are those for which v = 0 and those for which u = −1. Considering a Montgomery for which there
exists some non square d such that A = 2(1 + d)/(1− d) and B = 4/(1− d), we have the following
results:

� Since d is not a square in Fp, then A2 − 4 = 16d
(1−d)2 is not a square either. Thus, the only

point for which v = 0 is (0, 0).
� For u = −1, we must solve v2 = (A − 2)/B = d. Since d is not a square in Fq, there is no

solution.

The bottom line is that, for the Edwards curves we consider in this document, the only problematic
points for the mapping are the point at infinity (0, 1) and the only point of order 2, which is (0,−1).
We emphasize that (0, 1) is the only point of Ed with y = 1, and (0,−1) is the only point of Ed
with y = −1. So even when working with y-only coordinates (see bellow), those problematic points
can be dealt with.

A.2.1 Montgomery Ladder for Edwards Curve

Given a point P on a Montgomery curve, it is possible to restrict to x-coordinate only computations
to compute nP . The technique first appeared in [14] and is well documented in [9, 13]. This section
describes the Montgomery ladder and a straightforward way to benefit from this technique when
working with an Edwards curve.

A.2.2 Montgomery Ladder

Whatever the form of the curve, the Montgomery ladder allows to compute nP from P by perform-
ing, at each step, exactly one point addition and one doubling (which makes it less subject to side-
channel attacks than a simple square-and-multiply technique). Denoting n = (n`−1n`−2 . . . n1n0)
the binary representation of n (where n`−1 is the most significant bit), the Montgomery ladder
computes nP as follows:
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Algorithm 1 Montgomery ladder: compute nP from P

1: Q` = 0 and R` = P
2: for i = ` down to 1 do
3: if ni−1 = 0 then
4: Qi−1 = 2Qi and Ri−1 = Qi +Ri
5: else
6: Qi−1 = Qi +Ri and Ri−1 = 2Ri
7: end if
8: end for
9: return Q0

It is easy to see that we always have Ri −Qi = Ri+1 −Qi+1 = · · · = P .

A.2.3 The Ladder on a Montgomery Curve

Montgomery shows [14] how to to compute the u-coordinate of Qi +Ri, 2Qi, and 2Ri, when both
Qi and Ri are multiples of P and Ri = Qi + P , using only the u-coordinates of Qi, Ri, and P .
These formulas use projective coordinates. Starting with P = (uP , vP ) on a Montgomery curve
EA,B , we write P in projective coordinates P = (UP : VP : WP ) where UP = uP , VP = vP , and
WP = 1. With Q = (UQ : · : WQ), R = (UR : · : WR), Q + R = (UQ+R : · : WQ+R), and
2Q = (U2Q : · : W2Q), we have

UQ+R = WP ((UQ −WQ)(UR +WR) + (UQ +WQ)(UR −WR))
2

WQ+R = UP ((UQ −WQ)(UR +WR)− (UQ +WQ)(UR −WR))
2

and

U2Q = (UQ +WQ)2(UQ −WQ)2

W2Q = 4UQWQ

(
(UQ −WQ)2 +

A+ 2

4
(4UQWQ)

)
Note that 4UQWQ = (UQ + WQ)2 − (UQ − WQ)2 and that A+2

4 can be precomputed. Thus
the addition costs 4 field multiplications and 2 field squaring, while the doubling costs 3 field
multiplications and 2 field squaring.

A.2.4 The Ladder on an Edwards Curve

As we will see in the next section, the curve we consider in these specifications are birationally
equivalent to a Montgomery curve, there is a straightforward way to benefit from the algorithm
of the previous section. We provide a precise description of how this can be achieved in Sec-
tion 12.

A.3 The Curves We Consider in these Specifications

In this version of the specifications, we consider two specific elliptic curves, namely, the Million
Dollar Curve and Curve25519.
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A.3.1 Million Dollar Curve

Million Dollar Curve is an Edwards curve over the prime field Fp with

p = 109112363276961190442711090369149551676330307646118204517771511330536253156371,

defined by
x2 + y2 = 1 + dx2y2

where

d = 39384817741350628573161184301225915800358770588933756071948264625804612259721.

A.3.2 Curve25519

Curve25519 is a Montgomery curve over the prime field Fp with p = 2255 − 19 defined by

y2 = x3 + 486662x2 + x.

Curve25519 allows simple point compression when used for ECDH since it allows to restrict to
x-coordinate scalar multiplication. The base point suggested by Bernstein thus only specifies the
x-coordinate:

G = (9, ·)

The order of the subgroup generated by G is a prime larger than 2252. Bernstein and Lange show
in [8, Sec. 2] that this curve is birationally equivalent over Fp to the Edwards curve

x2 + y2 = 1 +
121665

121666
x2y2.
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